Publications by authors named "Shelley Ackerman"

Innate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies.

View Article and Find Full Text PDF

Chronic inflammation in adipose tissue, possibly related to adipose cell hypertrophy, hypoxia, and/or intestinal leakage of bacteria and their metabolic products, likely plays a critical role in the development of obesity-associated insulin resistance (IR). Cells of both the innate and adaptive immune system residing in adipose tissues, as well as in the intestine, participate in this process. Thus, M1 macrophages, IFN-γ-secreting Th1 cells, CD8+ T cells, and B cells promote IR, in part through secretion of proinflammatory cytokines.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADC) have generated significant interest as targeted therapeutics for cancer treatment, demonstrating improved clinical efficacy and safety compared with systemic chemotherapy. To extend this concept to other tumor-targeting proteins, we conjugated the tubulin inhibitor monomethyl-auristatin-F (MMAF) to 2.5F-Fc, a fusion protein composed of a human Fc domain and a cystine knot (knottin) miniprotein engineered to bind with high affinity to tumor-associated integrin receptors.

View Article and Find Full Text PDF

Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood.

View Article and Find Full Text PDF

Cystine-knot miniproteins, also known as knottins, constitute a large family of structurally related peptides with diverse amino acid sequences and biological functions. Knottins have emerged as attractive candidates for drug development as they potentially fill a niche between small molecules and protein biologics, offering drug-like properties and the ability to bind to clinical targets with high affinity and selectivity. Due to their extremely high stability and unique structural features, knottins also demonstrate promise in addressing challenging drug development goals, including the potential for oral delivery and the ability to access intracellular drug targets.

View Article and Find Full Text PDF

Tumors of the central nervous system are challenging to treat due to the limited effectiveness and associated toxicities of chemotherapy and radiation therapy. For tumors that can be removed surgically, extent of malignant tissue resection has been shown to correlate with disease progression, recurrence, and survival. Thus, improved technologies for real-time brain tumor imaging are critically needed as tools for guided surgical resection.

View Article and Find Full Text PDF