Publications by authors named "Shelie Miller"

Estimates show that 6.2 gigatons of carbon dioxide (CO) can be captured and utilized across three pathways, concrete, chemical, and minerals, by 2050. However, it is difficult to compare the climate benefit across these three carbon capture and utilization (CCU) pathways to determine the most effective use of captured CO.

View Article and Find Full Text PDF

Carbon capture and utilization for concrete production (CCU concrete) is estimated to sequester 0.1 to 1.4 gigatons of carbon dioxide (CO) by 2050.

View Article and Find Full Text PDF

Our food system is experiencing dramatic changes as the expansion of e-commerce, introduction of new products, and innovations in supply chain structures all pose to transform how we buy, sell, and distribute food. However, the environmental impacts of these transformations remain unclear. This feature reviews existing literature on environmental implications of e-commerce, discusses relevant trade-offs, and identifies pressing gaps in research.

View Article and Find Full Text PDF

Refrigerator ownership accompanies socio-economic development, with the potential to change human diets. Household refrigerator ownership in Vietnam has increased from 13% to 59% between 2004-2014. This study estimates changes in food consumption and diet linkages with household refrigerator ownership in Vietnam, while controlling for socioeconomic variables.

View Article and Find Full Text PDF

The steel sector emits 25% of global industrial greenhouse gases, and the U.S. is the world's second-largest steel consumer.

View Article and Find Full Text PDF

This article explores five commonly held perceptions that do not correspond with current scientific knowledge surrounding the environmental impacts of single-use plastic. These misperceptions include: (1) plastic packaging is the largest contributor to the environmental impact of a product; (2) plastic has the most environmental impact of all packaging materials; (3) reusable products are always better than single-use plastics; (4) recycling and composting should be the highest priority; (5) "zero waste" efforts that eliminate single-use plastics minimize the environmental impacts of an event. This paper highlights the need for environmental scientists and engineers to put the complex environmental challenges of plastic waste into better context, integrating a holistic, life cycle perspective into research efforts and discussions that shape public policy.

View Article and Find Full Text PDF

Refrigeration transforms developing food systems, changing the dynamics of production and consumption. This study models the introduction of an integrated refrigerated supply chain, or "cold chain," into sub-Saharan Africa and estimates changes in preretail greenhouse gas (GHG) emissions if the cold chain develops similarly to North America or Europe. Refrigeration presents an important and understudied trade-off: the ability to reduce food losses and their associated environmental impacts, but increasing energy use and creating GHG emissions.

View Article and Find Full Text PDF

The efficient provision of food, energy, and water (FEW) resources to cities is challenging around the world. Because of the complex interdependence of urban FEW systems, changing components of one system may lead to ripple effects on other systems. However, the inputs, intersectoral flows, stocks, and outputs of these FEW resources from the perspective of an integrated urban FEW system have not been synthetically characterized.

View Article and Find Full Text PDF

The human toxicity impact (HTI) of electricity produced from shale gas is lower than the HTI of electricity produced from coal, with 90% confidence using a Monte Carlo Analysis. Two different impact assessment methods estimate the HTI of shale gas electricity to be 1-2 orders of magnitude less than the HTI of coal electricity (0.016-0.

View Article and Find Full Text PDF

The unbroken global refrigerated supply chain, or cold chain, is rapidly expanding in developing countries. In addition to increasing the energy intensity of the food system, the expanded cold chain may facilitate changes in the global diet, food waste patterns, food production and distribution, and shopping habits. The sustainability impacts of many of these changes chain are unknown, given the complexity of interacting social, economic, and technical factors.

View Article and Find Full Text PDF

Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts.

View Article and Find Full Text PDF

Emerging products and technologies pose unique challenges for the life cycle assessment (LCA) community, given the lack of data and inherent uncertainties regarding their development. An emerging technology that has the potential to be transformative and effect broad-scale change within society, as well as the underpinning assumptions associated with its life cycle, is particularly difficult to analyze. Despite the associated challenges, LCA methods must be developed for transformative technologies.

View Article and Find Full Text PDF

The environmental impacts of bioenergy products have received a great deal of attention. Life cycle analysis (LCA) is a widely accepted method to quantify the environmental impacts of products. Conducting comprehensive LCAs for every possible bioenergy alternative is difficult because of the sheer magnitude of potential biomass sources and energy end products.

View Article and Find Full Text PDF

A comparative life cycle assessment examining soybean and petroleum-based lubricants is compiled using Monte Carlo analysis to assess system variability. Experimental data obtained from an aluminum manufacturing facility indicate significantly less soybean lubricant is required to achieve similar or superior performance. With improved performance and a lower use rate, a transition to soybean oil results in lower aggregate impacts of acidification, smog formation, and human health from criteria pollutants.

View Article and Find Full Text PDF

Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.

View Article and Find Full Text PDF

Intensive agricultural systems are largely responsible for the increase in global reactive nitrogen compounds, which are associated with significant environmental impacts. The nitrogen cycle in agricultural systems is complex and highly variable, which complicates characterization in environmental assessments. Appropriately representing nitrogen inputs into an ecosystem is essential to better understand and predict environmental impacts, such as the extent of seasonally occurring hypoxic zones.

View Article and Find Full Text PDF