The cost of enzymes makes enzymatic hydrolysis one of the most expensive steps in the production of lignocellulosic ethanol. Diverse studies have used commercial enzyme cocktails assuming that change in total protein concentration during hydrolysis was solely due to adsorption of endo- and exoglucanases onto the substrate. Given the sensitivity of enzymes and proteins to media conditions this assumption was tested by evaluating and modeling the protein concentration of commercial cocktails at hydrolysis conditions.
View Article and Find Full Text PDFLevoglucosan (1,6-anhydro-beta-d-glucopyranose) and other anhydrosugars can be produced in significant quantities during fast pyrolysis of lignocellulosic material. Levoglucosan can be extracted and hydrolyzed to produce fermentable glucose, however co-extraction of fermentation inhibitors can reduce ethanol yields. This work was aimed at evaluating various methods for mitigating the toxicity of bio-oil aqueous extract.
View Article and Find Full Text PDFFermentable sugar obtained from lignocellulosic material exhibits great potential as a renewable feedstock for the production of bio-ethanol. One potentially viable source of fermentable sugars is pyrolysis oil, commonly called bio-oil. Depending on the type of lignocellulosic material and the operating conditions used for pyrolysis, bio-oil can contain upwards of 10 wt% of 1,6-anhydro-beta-D-glucopyranose (levoglucosan, LG), an anhydrosugar that can be hydrolyzed to glucose.
View Article and Find Full Text PDFAnhydro sugars, produced during wood pyrolysis, can by hydrolyzed to sugars under acidic conditions. The acid hydrolysis of two common anhydro sugars in wood pyrolysis oils, levoglucosan (1,6-anhydro-beta-D-glucopyranose) and cellobiosan (beta-D-glucopyranosyl-(1-->4)-1,6-anhydro-D-glucopyranose), was investigated. Levoglucosan hydrolysis to glucose follows a first-order reaction, with an activation energy of 114 kJ mol(-1).
View Article and Find Full Text PDFHeterotrophic activities were investigated by measuring 3H-leucine incorporation to bacterial protein and 14C-glucose turnover in surface flow constructed wetlands receiving woodwaste leachate. No significant longitudinal variation was found in heterotrophic activities of bacterioplankton. An open wetland, a vegetated wetland, and a fertilized vegetated wetland were used to examine the effects of vegetation and ammonium nitrate amendment.
View Article and Find Full Text PDFSpent sulfite pulping liquor (SSL) is a high-organic content byproduct of acid bisulfite pulp manufacture which is fermented to make industrial ethanol. SSL is typically concentrated to 240 g/l (22% w/w) total solids prior to fermentation, and contains up to 24 g/l xylose and 30 g/l hexose sugars, depending upon the wood species used. The xylose present in SSL is difficult to ferment using natural xylose-fermenting yeast strains due to the presence of inhibitory compounds, such as organic acids.
View Article and Find Full Text PDFEnhanced oxygen delignification of softwood pulp samples (taken upstream and downstream of a commercial oxygen delignification unit) improved the initial rate of enzymatic saccharification and overall yield of monomeric sugars by 62-82% and 76-80%, respectively. Laboratory-scale experiments were used to examine the effect of a broad range of operating parameters (temperature, time, caustic concentration, and oxygen partial pressure) on the effectiveness of oxygen delignification. Using empirical models, kappa number (residual lignin content) was found to effectively predict final conversion to monomeric sugars.
View Article and Find Full Text PDFBatch biological treatment of log yard run-off reduced biochemical oxygen demand (BOD), chemical oxygen demand (COD) and tannin and lignin (TL) concentration by 99%, 80%, and 90%, respectively. Acute (Microtox) toxicity was decreased over treatment, from an initial EC50 of 1.83% to a value of 50.
View Article and Find Full Text PDFAppl Environ Microbiol
August 1990
Inactivation of the alcohol oxidase enzyme system of Pichia pastoris, during the whole-cell bioconversion of ethanol to acetaldehyde, was due to catabolite inactivation. Electron microscopy showed that methanol-grown cells contained peroxisomes but were devoid of these microbodies after the bioconversion. Acetaldehyde in the presence of O(2) was the effector of catabolite inactivation.
View Article and Find Full Text PDF