In humans, the majority of sustained traumatic brain injuries (TBIs) are classified as 'mild' and most often a result of a closed head injury (CHI). The effects of a non-penetrating CHI are not benign and may lead to chronic pathology and behavioral dysfunction, which could be worsened by repeated head injury. Clinical-neuropathological correlation studies provide evidence that conversion of tau into abnormally phosphorylated proteotoxic intermediates (p-tau) could be part of the pathophysiology triggered by a single TBI and enhanced by repeated TBIs.
View Article and Find Full Text PDFThere is a fundamental gap in understanding the consequences of tau-ribosome interactions. Tau oligomers and filaments hinder protein synthesis in vitro, and they associate strongly with ribosomes in vivo. Here, we investigated the consequences of tau interactions with ribosomes in transgenic mice, in cells, and in human brain tissues to identify tau as a direct modulator of ribosomal selectivity.
View Article and Find Full Text PDFTauopathies, the most common of which is Alzheimer's disease (AD), constitute the most crippling neurodegenerative threat to our aging population. Tauopathic patients have significant cognitive decline accompanied by irreversible and severe brain atrophy, and it is thought that neuronal dysfunction begins years before diagnosis. Our current understanding of tauopathies has yielded promising therapeutic interventions but have all failed in clinical trials.
View Article and Find Full Text PDFThe unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress.
View Article and Find Full Text PDF