Two-dimensional lead halide perovskites offer numerous attractive features for optoelectronics owing to their soft, deformable lattices and high degree of chemical tunability. While alteration of the metal and halide ions gives rise to significant modification of the bandgap energy, the organic spacer cations offer in-roads to tuning phase behavior and more subtle functionalities in ways that remain to be understood. Here, we study six variations of 2D perovskites changing only the organic spacer cations and demonstrate that these components intrinsically impact material response in important ways such as altering crystallographic structure, temperature-induced phase transitions, and photoluminescence emission.
View Article and Find Full Text PDFInterplay between structural and photophysical properties of metal halide perovskites is critical to their utility in optoelectronics, but there is limited understanding of lattice response upon photoexcitation. Here, 2D perovskites butylammonium lead iodide, (BA) PbI , and phenethylammonium lead iodide, (PEA) PbI , are investigated using ultrafast transient X-ray diffraction as a function of optical excitation fluence to discern structural dynamics. Both powder X-ray diffraction and time-resolved photoluminescence linewidths narrow over 1 ns following optical excitation for the fluence range studied, concurrent with slight redshifting of the optical bandgaps.
View Article and Find Full Text PDFThe photothermal properties of metal nitrides have recently received significant attention owing to diverse applications in solar energy conversion, photothermal therapies, photoreactions, and thermochromic windows. Here, the photothermal response of titanium nitride nanoparticles is examined using transient X-ray diffraction, in which optical excitation is synchronized with X-ray pulses to characterize dynamic changes in the TiN lattice. Photoinduced diffraction data is quantitatively analyzed to determine increases in the TiN lattice spacing, which are furthermore calibrated against static, temperature-dependent diffraction patterns of the same samples.
View Article and Find Full Text PDFNanoplatelets (NPLs)-colloidally synthesized, spatially anisotropic, two-dimensional semiconductor quantum wells-are of intense interest owing to exceptionally narrow transition line widths, coupled with solution processability and bandgap tunability. However, given large surface areas and undercoordinated bonding at facet corners and edges, excitation under sufficient intensities may induce anisotropic structural instabilities that impact desired properties. We employ time-resolved X-ray diffraction to study the crystal structure of CdSe NPLs in response to optical excitation.
View Article and Find Full Text PDF2D hybrid halide perovskites with the formula (A') (A) Pb I have remarkable stability and promising efficiency in photovoltaic and optoelectronic devices, yet fundamental understanding of film formation, key to optimizing these devices, is lacking. Here, in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) is used to monitor film formation during spin-coating. This elucidates the general film formation mechanism of 2D halide perovskites during one-step spin-coating.
View Article and Find Full Text PDFOrganic-inorganic hybrid halide perovskites are promising semiconductors with tailorable optical and electronic properties. The choice of A-site cation to support a three-dimensional (3D) perovskite structure AMX (where M is a metal and X is a halide) is limited by the geometric Goldschmidt tolerance factor. However, this geometric constraint can be relaxed in two-dimensional (2D) perovskites, providing us an opportunity to understand how various A-site cations modulate the structural properties and thereby the optoelectronic properties.
View Article and Find Full Text PDFMetal halide perovskite thin films have achieved remarkable performance in optoelectronic devices but suffer from spatial heterogeneity in their electronic properties. To achieve higher device performance and reliability needed for widespread commercial deployment, spatial heterogeneity of optoelectronic properties in the perovskite thin film needs to be understood and controlled. Clear identification of the causes underlying this heterogeneity, most importantly the spatial heterogeneity in charge trapping behavior, has remained elusive.
View Article and Find Full Text PDF