The theoretical understanding of electron transport in graphene and graphene nanoribbons is reviewed, emphasizing the help provided by atomic pseudopotentials (self-consistent and empirical) in determining not only the band structure but also other fundamental transport parameters such as electron-phonon matrix elements and line-edge roughness scattering. Electron-phonon scattering in suspended graphene sheets, impurity and remote-phonon scattering in supported and gated graphene, electron-phonon and line-edge roughness scattering in armchair-edge nanoribbons are reviewed, keeping in mind the potential use of graphene in devices of the future very large scale integration technology.
View Article and Find Full Text PDFEnviron Sci Technol
July 2012
The structural and electronic properties of Hg, SO(2), HgS, and HgO adsorption on Au(111) surfaces have been determined using density functional theory with the generalized gradient approximation. The adsorption strength of Hg on Au(111) increases by a factor of 1.3 (from -9.
View Article and Find Full Text PDF