The study aimed to evaluate the planning characteristics of spinal stereotactic body radiotherapy (SBRT) using mono- and dual-isocentric volumetrically modulated arc therapy (VMAT) techniques. The dosimetric indices were compared between different beam arrangement techniques for spinal SBRT planning, including spinal cord avoidance, planning target volume (PTV) dose coverage, conformity, homogeneity, and gradient index. A total of 8 PTVs were contoured on RANDO phantom computed tomography (CT) images, with 4 PTVs per section of the spine (thoracic and lumbar).
View Article and Find Full Text PDFThis study aimed to dosimetrically compare and evaluate the flattening filter-free (FFF) photon beam-based three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT). RANDO phantom computed tomography (CT) images were used for treatment planning. Gross tumor volumes (GTVs) were delineated in the central and peripheral lung locations.
View Article and Find Full Text PDFThe present study aimed to dosimetrically evaluate the small-fields of a 6 MV flattening filter-free (FFF) photon beam using different detectors.The 6 MV FFF photon beam was used for measurement of output factor, depth dose, and beam profile of small-fields of sizes 0.6 cm × 0.
View Article and Find Full Text PDFWe present a method for design and use of a digital mouse phantom for small animal optical imaging. We map the boundary of a mouse model from magnetic resonance imaging (MRI) data through image processing algorithms and discretize the geometry by a finite element (FE) descriptor. We use a validated FE implementation of the three-dimensional (3-D) diffusion equation to model transport of near infrared (NIR) light in the phantom with a mesh resolution optimized for representative tissue optical properties on a computing system with 8-GB RAM.
View Article and Find Full Text PDF