Publications by authors named "Shekeba Ahmadyar"

Protease inhibitors (PIs) remain an important component of antiretroviral therapy for the treatment of HIV-1 infection due to their high genetic barrier to resistance development. Nevertheless, the two most commonly prescribed HIV PIs, atazanavir and darunavir, still require co-administration with a pharmacokinetic boosting agent to maintain sufficient drug plasma levels which can lead to undesirable drug-drug interactions. Herein, we describe GS-9770, a novel investigational non-peptidomimetic HIV PI with unboosted once-daily oral dosing potential due to improvements in its metabolic stability and its pharmacokinetic properties in preclinical animal species.

View Article and Find Full Text PDF

Oral antiretroviral agents provide life-saving treatments for millions of people living with HIV, and can prevent new infections via pre-exposure prophylaxis. However, some people living with HIV who are heavily treatment-experienced have limited or no treatment options, owing to multidrug resistance. In addition, suboptimal adherence to oral daily regimens can negatively affect the outcome of treatment-which contributes to virologic failure, resistance generation and viral transmission-as well as of pre-exposure prophylaxis, leading to new infections.

View Article and Find Full Text PDF

People living with HIV (PLWH) have expressed concern about the life-long burden and stigma associated with taking pills daily and can experience medication fatigue that might lead to suboptimal treatment adherence and the emergence of drug-resistant viral variants, thereby limiting future treatment options. As such, there is strong interest in long-acting antiretroviral (ARV) agents that can be administered less frequently. Herein, we report GS-CA1, a new archetypal small-molecule HIV capsid inhibitor with exceptional potency against HIV-2 and all major HIV-1 types, including viral variants resistant to the ARVs currently in clinical use.

View Article and Find Full Text PDF

Toxicity has emerged during the clinical development of many but not all nucleotide inhibitors (NI) of hepatitis C virus (HCV). To better understand the mechanism for adverse events, clinically relevant HCV NI were characterized in biochemical and cellular assays, including assays of decreased viability in multiple cell lines and primary cells, interaction with human DNA and RNA polymerases, and inhibition of mitochondrial protein synthesis and respiration. NI that were incorporated by the mitochondrial RNA polymerase (PolRMT) inhibited mitochondrial protein synthesis and showed a corresponding decrease in mitochondrial oxygen consumption in cells.

View Article and Find Full Text PDF

Screening of a marine natural products library afforded three new analogues of the tetronic acid containing polyketide abyssomicin family and identified abyssomicin 2 as a selective reactivator of latent HIV virus. Examination of the mode of action of this new latent HIV reactivating agent demonstrated that it functions via a distinct mechanism compared to that of existing reactivating agents and is effective at reactivating latent virus in a subset of primary patient cell lines.

View Article and Find Full Text PDF