Background: Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points.
Methods: Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13).
Background: Simultaneous infection with multiple malaria parasite strains is common in high transmission areas. Quantifying the number of strains per host, or the multiplicity of infection (MOI), provides additional parasite indices for assessing transmission levels but it is challenging to measure accurately with current tools. This paper presents new laboratory and analytical methods for estimating the MOI of Plasmodium falciparum.
View Article and Find Full Text PDFBackground: Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES).
View Article and Find Full Text PDFBackground: Ethiopia has set a goal for malaria elimination by 2030. Low parasite density infections may go undetected by conventional diagnostic methods (microscopy and rapid diagnostic tests) and their contribution to malaria transmission varies by transmission settings. This study quantified the burden of subpatent infections from samples collected from three regions of northwest Ethiopia.
View Article and Find Full Text PDFDevelopment and improvement of quality control tests for live attenuated vaccines are a high priority because of safety concerns. Live attenuated influenza vaccine (LAIV) viruses are 6:2 reassortants containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from circulating influenza viruses to induce protective immune responses, and the six internal gene segments from a cold-adapted Master Donor Virus (MDV). LAIV candidate viruses for the 2012-2013 seasons, A/Victoria/361/2011-CDC-LV1 (LV1) and B/Texas/06/2011-CDC-LV2B (LV2B), were created by classical reassortment of A/Victoria/361/2011 and MDV-A A/Leningrad/134/17/57 (H2N2) or B/Texas/06/2011 and MDV-B B/USSR/60/69.
View Article and Find Full Text PDFThis article has been withdrawn at the request of the author and editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.
View Article and Find Full Text PDF