Diabetes mellitus is a group of diseases characterized by hyperglycemia and its consequences, affecting over 34 million individuals in the United States and 422 million worldwide. While most diabetes is polygenic and is classified as type 1 (T1D), type 2 (T2D), or gestational diabetes (GDM), at least 0.4% of all diabetes is monogenic in nature.
View Article and Find Full Text PDFWe report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in (). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects.
View Article and Find Full Text PDFActivating Signal Cointegrator 1 Complex, Subunit 3 (ASCC3) is part of the four-part ASC-1 transcriptional cointegrator complex. This complex includes ASCC1 (associated with spinal muscular atrophy with congenital bone fractures 2), TRIP4 (associated with spinal muscular atrophy with congenital bone fractures 1), and ASCC2 (not yet associated with human disease.) encodes a DNA helicase responsible for generating single-stranded DNA as part of the DNA damage response.
View Article and Find Full Text PDFWe present a male patient with constitutional ring 1 chromosome and subsequent 6 Mb deletion at 1q43q44. The patient displays overlapping clinical features with reported patients with ring 1 chromosome and 1q43q44 microdeletion syndrome. To our knowledge, this is the first patient with ring 1 chromosome characterized by comparative genomic hybridization.
View Article and Find Full Text PDFThe etiology of intellectual disabilities (ID) remains unknown for the majority of patients. Due to reduced reproductive fitness in many individuals with ID, de novo mutations account for a significant portion of severe ID. The ATP-dependent SWI/SNF chromatin modifier has been linked with neurodevelopmental disorders including ID and autism.
View Article and Find Full Text PDF