Nephroblastoma overexpressed (Nov), a member of the Cyr 61, connective tissue growth factor, Nov (CCN) family of proteins, is expressed by osteoblasts, but its function in cells of the osteoblastic lineage is not known. We investigated the effects of Nov overexpression by transducing murine ST-2 stromal and MC3T3 osteoblastic cells with a retroviral vector where Nov is under the control of the cytomegalovirus promoter. We also examined the skeletal phenotype of transgenic mice expressing Nov under the control of the human osteocalcin promoter.
View Article and Find Full Text PDFCCAAT enhancer-binding protein (C/EBP) homologous protein (CHOP), is a member of the C/EBP family of nuclear proteins and plays a role in osteoblastic and adipocytic cell differentiation. CHOP is necessary for normal bone formation, but the consequences of its overexpression in vivo are not known. To investigate the direct actions of CHOP on bone remodeling in vivo, we generated transgenic mice overexpressing CHOP under the control of the human osteocalcin promoter.
View Article and Find Full Text PDFUnlabelled: Notch proteins belong to a family of single pass transmembrane receptors that are activated after interactions with the membrane-bound ligands Delta and Jagged/Serrate. We determined the pathways responsible for the inhibitory effects of Notch on osteoblastogenesis and the contributions of the RAM domain and ankyrin repeats to this process in cells of the osteoblastic lineage.
Introduction: Notch receptors play a role in osteoblast differentiation.
Notch proteins are transmembrane receptors that control cell-fate decisions. Upon ligand binding, Notch receptors undergo proteolytic cleavage leading to the release of their intracellular domain (NICD). Overexpression of NICD impairs osteoblastogenesis, but the mechanisms are not understood.
View Article and Find Full Text PDFMembers of the CCN family of genes include cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), nephroblastoma overexpressed (NOV), and Wnt-induced secreted proteins (WISP) 1, 2 and 3. CCN proteins play a role in cell differentiation and function, but their expression and function in skeletal tissue is partially understood. We examined the expression and regulation of CCN genes in primary cultures of murine osteoblasts treated with transforming growth factor beta (TGFbeta), bone morphogenetic protein (BMP)-2, or cortisol.
View Article and Find Full Text PDFTransforming growth factor-beta (TGFbeta) superfamily of growth factors, which include bone morphogenetic proteins (BMPs), have multiple effects in osteoblasts. In this study, we examined the regulation of collagenase-3 promoter activity by BMP-2 in osteoblast-enriched (Ob) cells from fetal rat calvariae. BMP-2 suppressed the activity of a -2 kb collagenase-3 promoter/luciferase recombinant in a time- and dose-dependent manner.
View Article and Find Full Text PDFCollagenase 3 degrades collagen fibrils and is necessary for bone resorption. Cortisol increases collagenase 3 mRNA in osteoblasts by stabilizing collagenase 3 transcripts. To understand mechanisms involved, we used RNA electrophoretic mobility shift assay and RNA turnover studies.
View Article and Find Full Text PDF