This study sought to develop models for predicting near-term (1-3 day) fecal contamination events in coastal shellfish growing waters. Using Random Forest regression, we (1) developed fecal coliform (FC) concentration models for shellfish growing areas using watershed characteristics and antecedent hydrologic and meteorologic observations as predictors, (2) tested the change in model performance associated when forecasted, as opposed to measured, rainfall variables were used as predictors, and (3) evaluated model predictor importance in relation to shellfish sanitation management criteria. Models were trained to 10 years of coastal FC measurements (n = 1285) for 5 major shellfish management areas along the Florida (USA) coast.
View Article and Find Full Text PDFDespite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality.
View Article and Find Full Text PDFThis study assessed the combined effects of increased urbanization and climate change on streamflow in the Yadkin-Pee Dee watershed (North Carolina, USA) and focused on the conversion from forest to urban land use, the primary land use transition occurring in the watershed. We used the Soil and Water Assessment Tool to simulate future (2050-2070) streamflow and baseflow for four combined climate and land use scenarios across the Yadkin-Pee Dee River watershed and three subwatersheds. The combined scenarios pair land use change and climate change scenarios together.
View Article and Find Full Text PDF