Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can be much faster, but 3D scanning typically requires subjects to change into tight-fitting clothing, which increases time and cost and introduces privacy concerns.
View Article and Find Full Text PDFObjective: The objective of the current study was to increase scientific understanding of rear-seat passenger seating position, postures, CRS use, and belt use through a naturalistic study. A secondary objective was to compare data from vehicles used in ride-hailing with data from other vehicles.
Method: Video cameras were installed in the passenger cabins of the vehicles of 75 drivers near the center of the windshield.
Objective: Approximately 40% of the U.S. adult population are obese.
View Article and Find Full Text PDFObjective: Recent studies have suggested that a relationship exists between crash injury risk and occupant posture, particularly in postures different from those used with anthropomorphic test devices (ATDs) in crash testing. The objective of this study was to increase scientific understanding of typical front-seat passenger postures through a naturalistic study.
Method: Video cameras were installed in the passenger cabins of the vehicles of 75 drivers.
The Hybrid-III anthropometric test devices (ATDs) are widely used by the automotive industry to evaluate restraint system performance in standardized vehicle crash tests. The relationship between the belt fit measured for people in driving posture and the belt fit obtained with ATDs has not been reported in the literature. The present study compares lap and shoulder belt fit data from ATDs and to a statistical estimate for drivers using age, stature, and BMI.
View Article and Find Full Text PDFStudies of vehicle occupant motions in response to abrupt vehicle maneuvers have demonstrated movements that may result in changes in the level of protection for the occupant if a crash subsequently occurs. The previous studies have typically used a single vehicle. The current study assesses whether the patterns of occupant head movement are different across passenger vehicle types.
View Article and Find Full Text PDFHighly reclined postures may be common among passengers in future automated vehicles. A laboratory study was conducted to address the need for posture and belt fit in these seating configurations. In a laboratory vehicle mockup, the postures of 24 men and women with a wide range of body size were measured in a typical front vehicle seat at seat back angles of 23°, 33°, 43°, and 53°.
View Article and Find Full Text PDFAs automation transforms drivers into passengers, the deployment of automated vehicles (AVs) has the potential to greatly increase the incidence of motion sickness. A study was conducted to quantify motion sickness response of front-seat passengers performing ecologically relevant passenger activities during conditions consistent with driving on public roadways. Fifty-two adults with a large range of self-reported levels of motion sickness susceptibility and age participated in data collection on a closed test track in a passenger sedan.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2018
The design of child restraints is guided in part by anthropometric data describing the distributions of body dimensions of children. However, three-dimensional body shape data have not been available for children younger than three years of age. This study presents body shape models for children weighing 9-23 kg in a seated posture relevant to child restraint design.
View Article and Find Full Text PDFObjective: U.S. FMVSS 202a requires that a vehicle head restraint lie within a specified distance (55 mm) from the physical headform on the head restraint measurement device (HRMD).
View Article and Find Full Text PDFObjective: A test track study was conducted to quantify patterns of adult front seat passenger head motion during abrupt vehicle maneuvers.
Method: Eighty-seven men and women with a wide range of body sizes and ages participated in data collection on a closed test track in a passenger sedan under manual control by a test driver. Because a primary goal of the study was to gather "unaware" data, the participants were instructed that the study was concerned with vehicle dynamics and they were required to read from a questionnaire taped to the top of their thighs as the drive began.
Introduction: Previous laboratory studies have demonstrated that some drivers position their seat belts suboptimally. Specifically, the lap portion of the belt may be higher and farther forward relative to the pelvis than best practice, and the shoulder portion of the belt may be outboard or inboard of mid-shoulder. This study evaluated the performance of a video-based intervention for improving the belt fit obtained by drivers.
View Article and Find Full Text PDFIntroduction: Seat belt use provides significant public health benefit, however, most public awareness campaigns have generally focused on seat belt use rather than encouraging adults to improve seat belt fit with belt placement. This study provides an evaluation of a video-based intervention to improve adult belt fit assessing whether a video-based intervention can target beliefs and knowledge of seat belt placement and be perceived as relevant by the target audience.
Method: An intervention group of 29 adults (15 women and 14 men) and a comparison group of 99 adults (41 women and 47 men) participated.
Traffic Inj Prev
February 2018
Objective: The anthropomorphic test devices (ATDs) in the Hybrid III family are widely used as human surrogates to test the crash performance of vehicles. A previous study demonstrated that passenger belt fit in rear seats was affected by high body mass index (BMI) and to a lesser extent by increased age. Specifically, the lap belt was worn higher and more forward as BMI and age increased.
View Article and Find Full Text PDFData from a previous study of soldier driving postures and seating positions were analysed to develop statistical models for defining accommodation of driver seating positions in military vehicles. Regression models were created for seating accommodation applicable to driver positions with a fixed heel point and a range of steering wheel locations in typical tactical vehicles. The models predict the driver-selected seat position as a function of population anthropometry and vehicle layout.
View Article and Find Full Text PDFBackground: Previously published statistical models of driving posture have been effective for vehicle design but have not taken into account the effects of age.
Objective: The present study developed new statistical models for predicting driving posture.
Methods: Driving postures of 90 U.
Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations.
View Article and Find Full Text PDFWe present a new method for rapidly measuring child body shapes from noisy, incomplete data captured from low-cost depth cameras. This method fits the data using a statistical body shape model (SBSM) to find a complete avatar in the realistic body shape space. The method also predicts a set of standard anthropometric data for a specific subject without measuring dimensions directly from the fitted model.
View Article and Find Full Text PDFObjective: A series of sled tests was performed using vehicle seats and Hybrid-III 6-year-old (6YO) and 10YO anthropomorphic test devices (ATDs) to explore possibilities for improving occupant protection for children who are not using belt-positioning booster seats.
Methods: Cushion length was varied from production length of 450 mm to a shorter length of 350 mm. Lap belt geometry was set to rear, mid, and forward anchorage locations that span the range of lap belt angles found in vehicles.
A laboratory study of posture and belt fit was conducted with 46 men and 51 women, 61% of whom were age 60 years or older and 32% age 70 years or older. In addition, 28% of the 97 participants were obese, defined as body mass index ≥ 30 kg/m^2. A mockup of a passenger vehicle driver's station was created and five belt anchorage configurations were produced by moving the buckle, outboard-upper (D-ring), and outboard-lower anchorages.
View Article and Find Full Text PDFThis study examined how child restraint system (CRS) features contribute to CRS installation errors. Sixteen convertible CRS, selected to include a wide range of features, were used in volunteer testing with 32 subjects. Subjects were recruited based on their education level (high or low) and experience with installing CRS (none or experienced).
View Article and Find Full Text PDFKnowledge of the distributions of cervical-spine curvature is needed for computational studies of cervical-spine injury in motor-vehicle crashes. Many methods of specifying spinal curvature have been proposed, but they often involve qualitative assessment or a large number of parameters. The objective of this study was to develop a quantitative method of characterizing cervical-spine curvature using a small number of parameters.
View Article and Find Full Text PDFBelt-positioning booster seats are recommended for children who use vehicle seat belts as primary restraints but who are too small to obtain good belt fit. Previous research has shown that belt-positioning boosters reduce injury risk, but the belt fit produced by the wide range of boosters in the US market has not previously been assessed. The present study describes the development of a method for quantifying static belt fit with a Hybrid-III 6-year-old test dummy.
View Article and Find Full Text PDFIn the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 "normal" adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects' cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender.
View Article and Find Full Text PDF