Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD.
View Article and Find Full Text PDFBackground: Mutations in PINK1 and parkin cause autosomal recessive Parkinson's disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking.
View Article and Find Full Text PDFMotor neurons in ALS die via cell-autonomous and non-cell-autonomous mechanisms. Using adult human astrocytes and motor neurons, Re et al. (2014), in this issue of Neuron, discover that familial and sporadic ALS-derived human adult astrocytes secrete neurotoxic factors that selectively kill motor neurons through necroptosis, suggesting a new therapeutic avenue.
View Article and Find Full Text PDFAxonal transport defects and axonopathy are prominent in early preclinical stages of Alzheimer's disease (AD), often preceding known disease-related pathology by over a year. As epigenetic transcriptional regulatory mechanisms, such as histone acetylation, are critical for neurogenesis, it is postulated that their misregulation might be linked to early pathophysiological mechanisms that contribute to AD. The histone acetyltransferase (HAT) Tip60 epigenetically regulates genes enriched for neuronal functions and is implicated in AD via its formation of a transcriptional regulatory complex with the amyloid precursor protein (APP) intracellular domain.
View Article and Find Full Text PDFSleep disturbances are common in neurodegenerative diseases such as Alzheimer disease (AD). Unfortunately, how AD is mechanistically linked with interference of the body's natural sleep rhythms remains unclear. Our recent findings provide insight into this question by demonstrating that sleep disruption associated with AD is driven by epigenetic changes mediated by the histone acetyltransferase (HAT) Tip60.
View Article and Find Full Text PDFDynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity.
View Article and Find Full Text PDFTip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed "small ventrolateral neurons" (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep-wake cycles.
View Article and Find Full Text PDFHistone acetylation of chromatin promotes dynamic transcriptional responses in neurons that influence neuroplasticity critical for cognitive ability. It has been demonstrated that Tip60 histone acetyltransferase (HAT) activity is involved in the transcriptional regulation of genes enriched for neuronal function as well as the control of synaptic plasticity. Accordingly, Tip60 has been implicated in the neurodegenerative disorder Alzheimer's disease (AD) via transcriptional regulatory complex formation with the AD linked amyloid precursor protein (APP) intracellular domain (AICD).
View Article and Find Full Text PDF