Background: Paget's disease of bone (PDB) is a common destructive condition of bone that affects 1-2% of the population, most typically those over the age of 55 years. It is usually asymptomatic.
Objective: The aim of this article is to describe the clinical presentation, diagnosis and management of patients with PDB.
Although the equine lentivirus (equine infectious anemia virus [EIAV]) poses a major threat to equid populations throughout most regions of the world, detailed knowledge concerning its molecular epidemiology is still in its infancy. Such information is important because the few studies conducted to date suggest there is extensive genetic variation between viral isolates that if confirmed has significant implications for future vaccine design and development of newer diagnostic procedures. Here, we avoid potential assembly artifacts inherent in composite sequencing techniques by using long-range PCR in conjunction with next-generation sequencing for the rapid molecular characterization of all major open reading frames (ORFs) and known transcription factor binding motifs within the long terminal repeats (LTRs) of four North American EIAV isolates from Pennsylvania (EIAV), Tennessee (EIAV), North Carolina (EIAV), and Florida (EIAV).
View Article and Find Full Text PDFMolecular and serological techniques for Equine Infectious Anemia Virus (EIAV) diagnosis were compared using samples from 59 clinically normal horses stabled on five farms in the Santa Fe Province of Argentina. Of these 26 (44.1%) were positive in official AGID tests and/or gp45/gp90-based ELISA.
View Article and Find Full Text PDFLentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data.
View Article and Find Full Text PDFVet Immunol Immunopathol
October 2014
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge.
View Article and Find Full Text PDFLentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy.
View Article and Find Full Text PDFDistinct from human lentivirus infection, equine infectious anemia virus (EIAV)-infected horses will eventually enter an inapparent carrier state in which virus replication is apparently controlled by adaptive immune responses. Although recrudescence of disease can occur after immune suppression, the actual immune correlate associated with protection has yet to be determined. Therefore, EIAV provides a model for investigating immune-mediated protective mechanisms against lentivirus infection.
View Article and Find Full Text PDFWe recently reported an attenuated EIAV vaccine study that directly examined the effect of lentiviral envelope sequence variation on vaccine efficacy. The study [1] demonstrated for the first time the failure of an ancestral vaccine to protect and revealed a significant, inverse, linear relationship between envelope divergence and protection from disease. In the current study we examine in detail the evolution of the attenuated vaccine strain utilized in this previous study.
View Article and Find Full Text PDFBackground: Equine infectious anemia virus (EIAV), a lentivirus that infects horses, has been utilized as an animal model for the study of HIV. Furthermore, the disease associated with the equine lentivirus poses a significant challenge to veterinary medicine around the world. As with all lentiviruses, EIAV has been shown to have a high propensity for genomic sequence and antigenic variation, especially in its envelope (Env) proteins.
View Article and Find Full Text PDFHorse IL-7 (HIL-7) cDNA was isolated from adult lymph node tissue by reverse transcription polymerase chain reaction (RT-PCR) using oligonucleotide primers based on horse genomic sequences (The Broad Institute). In addition, to the full-length (FL) 531bp reading frame encoding 176 amino acids, shorter open-reading frames of 477, 396 and 264bp were also amplified. Nucleotide sequence analysis of these RT-PCR products demonstrated they were homologous except the shorter species were missing internal sequences consistent with multiple RNA splicing events.
View Article and Find Full Text PDFA highly effective attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from disease induced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the level of protection against divergent Env challenge strains (J. K. Craigo, B.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2007
Lentiviral envelope antigenic variation and associated immune evasion are believed to present major obstacles to effective vaccine development. Although this perception is widely assumed by the scientific community, there is, to date, no rigorous experimental data assessing the effect of increasing levels of lentiviral Env variation on vaccine efficacy. It is our working hypothesis that Env is, in fact, a primary determinant of vaccine effectiveness.
View Article and Find Full Text PDFEquine infectious anemia virus (EIAV) infection of horses provides a valuable model for examining the natural immunological control of lentivirus infection and disease and the mechanisms of protective and enhancing vaccine immunity. We have previously hypothesized that the EIAV envelope (Env) proteins gp90 and gp45 are major determinants of vaccine efficacy, and that the development of protective immunity by attenuated viral vaccines may be associated with the progressive redirection of immune responses from immunodominant, variable Env segments to immunorecessive, conserved Env sequences. Whilst the antibody-neutralization determinants of Env have been defined, there are to date no comprehensive analyses of the lymphoproliferative (T-helper, Th) and cytotoxic T-cell (CTL) epitopes of the EIAV Env proteins.
View Article and Find Full Text PDFWe previously reported that an experimental live-attenuated equine infectious anemia virus (EIAV) vaccine, containing a mutated S2 accessory gene, provided protection from disease and detectable infection after virulent virus (EIAV(PV)) challenge [Li F, Craigo JK, Howe L, Steckbeck JD, Cook S, Issel C, et al. A live-attenuated equine infectious anemia virus proviral vaccine with a modified S2 gene provides protection from detectable infection by intravenous virulent virus challenge of experimentally inoculated horses. J Virol 2003;77(13):7244-53; Craigo JK, Li F, Steckbeck JD, Durkin S, Howe L, Cook SJ, et al.
View Article and Find Full Text PDFEquine infectious anemia virus (EIAV) envelope variation produces newly dominant quasispecies with each sequential disease cycle; new populations arise, and previous plasma quasispecies, including the original inoculum, become undetectable. The question remains whether these ancestral variants exist in tissue reservoirs or if the immune system eliminates quasispecies from persistent infections. To examine this, an EIAV long-term inapparent carrier was immune suppressed with dexamethasone.
View Article and Find Full Text PDFIn the context of DNA vaccines the native equine infectious anemia virus (EIAV)-envelope gene has proven to be an extremely weak immunogen in horses probably because the RNA transcripts are poorly expressed owing to an unusual codon-usage bias, the possession of multiple RNA splice sites and potential adenosine-rich RNA instability elements. To overcome these problems a synthetic version of sequences encoding the EIAV surface unit (SU) envelope glycoprotein was produced (SYNSU) in which the codon-usage bias was modified to conform to that of highly expressed horse and human genes. In transfected COS-1 cell cultures, the steady state expression levels of SYNSU were at least 30-fold greater than equivalent native SU sequences.
View Article and Find Full Text PDFAmong the diverse experimental vaccines evaluated in various animal lentivirus models, live attenuated vaccines have proven to be the most effective, thus providing an important model for examining critical immune correlates of protective vaccine immunity. We previously reported that an experimental live attenuated vaccine for equine infectious anemia virus (EIAV), based on mutation of the viral S2 accessory gene, elicited protection from detectable infection by virulent virus challenge (F. Li et al.
View Article and Find Full Text PDFPathogenicity was reportedly restored to an avirulent molecular clone of equine infectious anemia virus (EIAV) by substitution of 3' sequences from the pathogenic variant strain (EIAV(PV)). However, the incidence of disease in horses/ponies was found to be significantly lower (P = 0.016) with the chimeric clone (EIAV(UK)) than with EIAV(PV).
View Article and Find Full Text PDFDynamic genomic variation resulting in changes in envelope antigenicity has been established as a fundamental mechanism of persistence by equine infectious anemia virus (EIAV), as observed with other lentiviruses, including HIV-1. In addition to the reported changes in envelope sequences, however, certain studies indicate the viral LTR as a second variable EIAV gene, with the enhancer region being designated as hypervariable. These observations have lead to the suggestion that LTR variation may alter viral replication properties to optimize to the microenvironment of particular tissue reservoirs.
View Article and Find Full Text PDFThe genetic variation of equine infectious anaemia virus (EIAV) clearly affects the antigenic properties of the viral envelope; however, effects on immunogenicity remain undefined, although widely assumed. Here, the immunogenicity is reported of a novel, neutralization-resistant, pony-isolate envelope EIAV(PV564DeltaPND) that contains a 14-residue deletion in the designated principal neutralizing domain (PND) of the gp90 protein. Two ponies inoculated with a chimeric virus, EIAV(DeltaPND), containing the EIAV(PV564DeltaPND) envelope in a reference provirus strain, remained asymptomatic through 14 months post-inoculation, producing high steady-state levels of envelope-specific antibodies but no detectable serum-neutralizing antibodies.
View Article and Find Full Text PDF