Local haemodynamics control arterial homeostasis and dysfunction by generating wall shear stress (WSS) which regulates endothelial cell (EC) physiology. Here we use a zebrafish model to identify genes that regulate EC proliferation in response to flow. Suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) reduced EC proliferation in the intersegmental vessels (ISVs) compared to controls exposed to flow.
View Article and Find Full Text PDFCardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques.
View Article and Find Full Text PDFDespite an appetite for change, equality, diversity and inclusivity (EDI)-related issues continue to ripple through the world of research and academia, from inequity at the point of entry into education, through to lack of diversity and equality in senior roles. Many academic institutes and governments are taking action to solve these issues, and we welcome the growing number of inclusive practices in the science communication arena. Building from this, we - at the University of Sheffield, UK - have assessed our own situation, responded to pressures applied by research councils, and listened to our staff and student voice.
View Article and Find Full Text PDFIntroduction: Despite epidemiological associations between community acquired pneumonia (CAP) and myocardial infarction, mechanisms that modify cardiovascular disease during CAP are not well defined. In particular, largely due to a lack of relevant experimental models, the effect of pneumonia on atherosclerotic plaques is unclear. We describe the development of a murine model of the commonest cause of CAP, pneumonia, on a background of established atherosclerosis.
View Article and Find Full Text PDFTribbles 3 (TRIB3) modulates lipid and glucose metabolism, macrophage lipid uptake, with a gain-of-function variant associated with increased cardiovascular risk. Here we set out to examine the role of this pseudokinase in atherosclerotic plaque development. Human endarterectomy atherosclerotic tissue specimens analysed by immunofluorescence showed upregulated TRIB3 in unstable plaques and an enrichment in unstable regions of stable plaques.
View Article and Find Full Text PDFEndothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway.
View Article and Find Full Text PDFAtherosclerosis is characterised by abnormal lipid and cell accumulation within arterial layers that leads to disturbed blood flow. Modified cholesterol forms such as oxidised low-density lipoprotein (oxLDL) enter cells altering their phenotype, triggering over-exuberant repair and arterial occlusion, myocardial infarction or stroke. We hypothesised that oxLDL enters vascular wall cells and induces interleukin-1β (IL-1β) secretion, potentially via a caspase-1/NLRP3 mechanism.
View Article and Find Full Text PDFNeurovascular coupling is a critical brain mechanism whereby changes to blood flow accompany localised neural activity. The breakdown of neurovascular coupling is linked to the development and progression of several neurological conditions including dementia. In this study, we examined cortical haemodynamics in mouse preparations that modelled Alzheimer's disease (J20-AD) and atherosclerosis (PCSK9-ATH) between 9 and 12 m of age.
View Article and Find Full Text PDFTwo-dimensional (2D) Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20 keV. The TAIs create intensity modulations with a high compression ratio on the micrometer scale at short propagation distances. Their performance was compared with various other wavefront markers in terms of period, visibility, flux efficiency, and flexibility to be adapted for limited beam coherence and detector resolution.
View Article and Find Full Text PDFInfarct size is a major determinant of outcomes after acute myocardial infarction (AMI). Carbon monoxide-releasing molecules (CORMs), which deliver nanomolar concentrations of carbon monoxide to tissues, have been shown to reduce infarct size in rodents. We evaluated efficacy and safety of CORM-A1 to reduce infarct size in a clinically relevant porcine model of AMI.
View Article and Find Full Text PDFBreast cancer bone metastasis is currently incurable, ~75% of patients with late-stage breast cancer develop disease recurrence in bone and available treatments are only palliative. We have previously shown that production of the pro-inflammatory cytokine interleukin-1B (IL-1B) by breast cancer cells drives bone metastasis in patients and in preclinical in vivo models. In the current study, we have investigated how IL-1B from tumour cells and the microenvironment interact to affect primary tumour growth and bone metastasis through regulation of the immune system, and whether targeting IL-1 driven changes to the immune response improves standard of care therapy for breast cancer bone metastasis.
View Article and Find Full Text PDFPulmonary hypertension (PH), increased blood pressure within the lungs, is classified into five diagnostic groups based on etiology, with treatment assigned on this basis. Currently, only Group 1 pulmonary arterial hypertension (PAH) and Group 4 chronic thromboembolic PH (CTEPH) have pharmacological treatments available. The role of the endothelial cell in pulmonary hypertension has long been debated, and in this issue of the JCI, Culley et al.
View Article and Find Full Text PDFFor over fifty years, Pictou Landing First Nation (PLFN), a small Mi'kmaw community on the northern shore of mainland Nova Scotia, Canada, has been told by a Joint Environmental Health Monitoring Committee (JEHMC) mandated to oversee the health of the community that their health has not been impacted by exposure to 85 million litres of pulp mill effluent dumped every day into what was once a culturally significant body of water bordering their community. Yet, based on lived experience, the community knows otherwise, and despite countless dollars spent on government and industry-sponsored research, their concerns have not gone away. Using biopolitical theory, we explore why JEHMC never fully implemented its mandate.
View Article and Find Full Text PDFThe use of animal models is fundamental to furthering our understanding of human disease mechanisms, as well as identifying potential therapeutic targets. Diseases of ageing often involve multiple body systems; however, multi-systemic features are not fully recapitulated in the many of the animal models available. Therefore, combining pre-clinical models to better reflect the multimorbidities observed at the clinical level is critical.
View Article and Find Full Text PDFVascular calcification describes the formation of mineralized tissue within the blood vessel wall, and it is highly associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. In this article, we briefly review different rodent models used to study vascular calcification in vivo, and critically assess the strengths and weaknesses of the current techniques used to analyze and quantify calcification in these models, namely 2-D histology and the -cresolphthalein assay. In light of this, we examine X-ray micro-computed tomography (µCT) as an emerging complementary tool for the analysis of vascular calcification in animal models.
View Article and Find Full Text PDFThe pro-inflammatory cytokine interleukin-1 (IL-1) plays a key role in many physiological processes and during the inflammatory and immune response to most common diseases. IL-1 exists as two agonists, IL-1α and IL-1β that bind to the only signaling IL-1 type 1 receptor (IL-1R1), while a second decoy IL-1 type 2 receptor (IL-1R2) binds both forms of IL-1 without inducing cell signaling. The field of immunology and inflammation research has, over the past 35 years, unraveled many mechanisms of IL-1 actions, through in vitro manipulation of the IL-1 system or by using genetically engineered mouse models that lack either member of the IL-1 family in ubiquitous constitutive manner.
View Article and Find Full Text PDFEarly impairments to neurovascular coupling have been proposed to be a key pathogenic factor in the onset and progression of Alzheimer's disease (AD). Studies have shown impaired neurovascular function in several mouse models of AD, including the J20-hAPP mouse. In this study, we aimed to investigate early neurovascular changes using wild-type (WT) controls and J20-hAPP mice at 6 months of age, by measuring cerebral haemodynamics and neural activity to physiological sensory stimulations.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFNeutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a rare but fatal disease. Current treatments increase life expectancy but have limited impact on the progressive pulmonary vascular remodelling that drives PAH. Osteoprotegerin (OPG) is increased within serum and lesions of patients with idiopathic PAH and is a mitogen and migratory stimulus for pulmonary artery smooth muscle cells (PASMCs).
View Article and Find Full Text PDFMacrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced expression mediates the strong genetic association between the locus and increased CHD risk in man. However, we report here that myeloid-specific (m) deficiency reduces early atheroma formation and that m transgene expression increases atherogenesis.
View Article and Find Full Text PDFIt has been hypothesized that interleukin-1alpha (IL-1α) is released from damaged cardiomyocytes following myocardial infarction (MI) and activates cardiac fibroblasts via its receptor (IL-1R1) to drive the early stages of cardiac remodeling. This study aimed to definitively test this hypothesis using cell type-specific IL-1α and IL-1R1 knockout (KO) mouse models. A floxed Il1α mouse was created and used to generate a cardiomyocyte-specific IL-1α KO mouse line (MIL1AKO).
View Article and Find Full Text PDFNeuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin-muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation.
View Article and Find Full Text PDFThe cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed () mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1) mice.
View Article and Find Full Text PDFEfficient blood supply to the brain is of paramount importance to its normal functioning and improper blood flow can result in potentially devastating neurological consequences. Cerebral blood flow in response to neural activity is intrinsically regulated by a complex interplay between various cell types within the brain in a relationship termed neurovascular coupling. The breakdown of neurovascular coupling is evident across a wide variety of both neurological and psychiatric disorders including Alzheimer's disease.
View Article and Find Full Text PDF