Publications by authors named "Sheila Brooke"

Neuronal apoptosis following ischemia can be mediated by a caspase-dependent pathway, which involves the mitochondrial release of cytochrome c that initiates a cascade of caspase activation. In addition, there is a caspase-independent pathway, which is mediated by the release of apoptosis-inducing factor (AIF). Using caspase inhibitor gene therapy, we investigated the roles of caspases on the mitochondrial release of cyt c and the release of AIF.

View Article and Find Full Text PDF

Apoptosis arises from neuronal damage following an ischemic insult. Apoptosis-inducing factor (AIF) is a protein released from mitochondria in response to pro-apoptotic signals which then translocates to the nucleus and triggers DNA fragmentation. In parallel with this, pro-apoptotic signals cause the release of cytochrome c from mitochondria, activating caspase-dependent apoptosis.

View Article and Find Full Text PDF

Neuronal death following necrotic insults involves the generation of reactive oxygen species (ROS). We investigated the effects of antioxidant gene therapy on ROS accumulation after exposure to either sodium cyanide, kainic acid or oxygen glucose deprivation (OGD). Specifically, we generated herpes simplex virus-1 amplicon vector expressing the gene for the antioxidant enzyme CuZnSOD.

View Article and Find Full Text PDF

It is now recognized that the generation of reactive oxygen species (ROS) following necrotic neurological insults plays a central role in the subsequent neuron death. A key step in ROS detoxification is the conversion of hydrogen peroxide to water and oxygen by either catalase (CAT) or glutathione peroxidase (GPX). We have previously shown that overexpression of CAT or GPX protects cultured neurons against subsequent excitotoxic insults.

View Article and Find Full Text PDF

HIV infection of the nervous system can cause neurotoxicity, and the glycoprotein gp120 of HIV seems to play a key role in this. gp120 is neurotoxic through a multi-cellular pathway, stimulating microglia to release excitotoxins, cytokines and reactive oxygen species, which then damage neurons. We have previously shown that estrogen decreases the neurotoxicity of gp120 in mixed neuronal/glial cultures.

View Article and Find Full Text PDF

There is now considerable knowledge concerning neuron death following necrotic insults, and it is believed that the generation of reactive oxygen species (ROS) and oxidative damage play a pivotal role in the neuron death. Prompted by this, we have generated herpes simplex virus-1 amplicon vectors over-expressing the genes for the antioxidant enzymes catalase (CAT) or glutathione peroxidase (GPX), both of which catalyze the degradation of hydrogen peroxide. Over-expression of each of these genes in primary hippocampal or cortical cultures resulted in increased enzymatic activity of the cognate protein.

View Article and Find Full Text PDF

gp120, the coat glycoprotein of HIV, can damage CNS neurons. This appears to mostly involve an indirect pathway in which gp120 infects microglia, triggering the release of cytokines and glutamatergic excitotoxins which then damage neurons. A well-characterized response of cells to insults is to mobilize the heat stress response, a defense that has a number of protective consequences.

View Article and Find Full Text PDF

Studies examining the development of AIDS Related Dementia have concentrated on neurotoxic properties of the HIV viral coat protein, gp120. We have previously shown that this neurotoxicity can be exacerbated by glucocorticoids (GCs), the stress hormones secreted by the adrenal. Moreover, GCs also worsen several of the mechanisms mediating gp120 neurotoxicity, such as increased calcium flux, ROS generation, and energy depletion.

View Article and Find Full Text PDF

gp120, the coat protein of HIV, can be neurotoxic and is thought to contribute to AIDS-related dementia complex. Such toxicity involves activation of glutamate receptors, mobilization of free cytosolic calcium, and generation of oxygen radicals. We have previously shown that the estrogen 17beta-estradiol, in concentrations of 100 nM or higher, lessens the neurotoxicity of gp120 in hippocampal and cortical cultures, blunts gp120-induced calcium mobilization, and lessens the oxidative consequences.

View Article and Find Full Text PDF

Gp120 protein, part of the HIV coat, may be a causative agent in AIDS-Related Dementia (ARD) because of its demonstrated neurotoxicity in vitro and in vivo. There are two possible mechanisms for this toxicity, namely through release of toxins from the microglia or through direct action on neuronal chemokine receptors. In tissue culture, glucocorticoids (GCs), the adrenal steroids released during stress, exacerbate gp120 neurotoxicity.

View Article and Find Full Text PDF

Overexpression of bcl-2protects neurons from numerous necrotic insults, both in vitro and in vivo. While the bulk of such protection is thought to arise from Bcl-2 blocking cytochrome c release from mitochondria, thereby blocking apoptosis, the protein can target other steps in apoptosis, and can protect against necrotic cell death as well. There is evidence that these additional actions may be antioxidant in nature, in that Bcl-2 has been reported to protect against generators of reactive oxygen species (ROS), to increase antioxidant defenses and to decrease levels of ROS and of oxidative damage.

View Article and Find Full Text PDF
Boosting patient access.

Nurs Times

September 2002

This article is a personal opinion by a lead nurse manager in response to an article written by a GP criticizing NHS walk-in centres (May, 2002). The author argues that such facilities improve patients' access to primary care and are a good use of scarce resources. It is also argued that walk-in centres support other NHS providers.

View Article and Find Full Text PDF

Glucocorticoids (GCs), the adrenal steroids secreted during stress, compromise the ability of hippocampal neurons to survive various necrotic insults. We have previously observed that GCs enhance the hippocampal neurotoxicity of reactive oxygen species and, as a potential contributor to this, decrease the activity of the antioxidant enzyme, glutathione peroxidase (GSPx). In this report, we have studied the possible mechanisms underlying this GC effect upon GSPx in primary hippocampal cultures and have observed several results.

View Article and Find Full Text PDF

GP120 (the protein component of the HIV viral coat) is neurotoxic and may contribute to the cell loss associated with AIDS-related dementia. Previously, it has been shown in rat cortical mixed cultures that gp120 increased the accumulation of hydrogen peroxide and superoxide, two reactive oxygen species (ROS). We now demonstrate that gp120 increased activity of the key antioxidant glutathione peroxidase (GSPx), presumably as a defensive mechanism against the increased ROS load.

View Article and Find Full Text PDF