Background: A treated fabric device for emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against night-biting Anopheles and Culex mosquitoes for several months. Here perceptions of community end users provided with such transfluthrin emanators, primarily intended to protect them against day-active Aedes vectors of human arboviruses that often attack people outdoors, were assessed in Port-au-Prince, Haiti.
Methods: Following the distribution of transfluthrin emanators to participating households in poor-to-middle class urban neighbourhoods, questionnaire surveys and in-depth interviews of end-user households were supplemented with conventional and Photovoice-based focus group discussions.
Background: A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil.
Methods: A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae.
PLoS One
May 2024
Background: A simple treated fabric device for passively emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against nocturnal Anopheles and Culex mosquitoes for several months. Here these transfluthrin emanators were assessed in Port-au-Prince, Haiti against outdoor-biting Aedes.
Methods: Transfluthrin emanators were distributed to participating households in poor-to-middle class urban neighbourhoods and evaluated once every two months in terms of their effects on human landing rates of wild Aedes populations.
Background: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO).
View Article and Find Full Text PDFBackground: Namibia's focus on the elimination of malaria requires an evidence-based strategy directed at understanding and targeting the entomological drivers of malaria transmission. In 2018 and 2019, the Namibia National Vector-borne Diseases Control Program (NVDCP) implemented baseline entomological surveillance based on a question-based approach outlined in the Entomological Surveillance Planning Tool (ESPT). In the present study, we report on the findings of the ESPT-based NVDCP on baseline vector species composition and bionomic traits in malaria endemic regions in northern Namibia, which has the aim of generating an evidence base for programmatic decision-making.
View Article and Find Full Text PDFBackground: Although the Republic of Namibia has significantly reduced malaria transmission, regular outbreaks and persistent transmission impede progress towards elimination. Towards an understanding of the protective efficacy, as well as gaps in protection, associated with long-lasting insecticidal nets (LLINs), human and Anopheles behaviors were evaluated in parallel in three malaria endemic regions, Kavango East, Ohangwena and Zambezi, using the Entomological Surveillance Planning Tool to answer the question: where and when are humans being exposed to bites of Anopheles mosquitoes?
Methods: Surveillance activities were conducted during the malaria transmission season in March 2018 for eight consecutive nights. Four sentinel structures per site were selected, and human landing catches and human behavior observations were consented to for a total of 32 collection nights per site.
After mating, female mosquitoes need animal blood to develop their eggs. In the process of acquiring blood, they may acquire pathogens, which may cause different diseases in humans such as malaria, zika, dengue, and chikungunya. Therefore, knowing the parity status of mosquitoes is useful in control and evaluation of infectious diseases transmitted by mosquitoes, where parous mosquitoes are assumed to be potentially infectious.
View Article and Find Full Text PDFBackground: Eave ribbons treated with spatial repellents effectively prevent human exposure to outdoor-biting and indoor-biting malaria mosquitoes, and could constitute a scalable and low-cost supplement to current interventions, such as insecticide-treated nets (ITNs). This study measured protection afforded by transfluthrin-treated eave ribbons to users (personal and communal protection) and non-users (only communal protection), and whether introducing mosquito traps as additional intervention influenced these benefits.
Methods: Five experimental huts were constructed inside a 110 m long, screened tunnel, in which 1000 Anopheles arabiensis were released nightly.
Background: A number of mosquito vectors bite and rest outdoors, which contributes to sustained residual malaria transmission in endemic areas. Spatial repellents are thought to create a protective "bubble" within which mosquito bites are reduced and may be ideal for outdoor use. This study builds on previous studies that proved efficacy of transfluthrin-treated hessian strips against outdoor biting mosquitoes.
View Article and Find Full Text PDFBackground: The vapor phase of the volatile pyrethroid transfluthrin incapacitates mosquitoes and prevents them from feeding. Although existing emanator products for delivering volatile pyrethroids protect against outdoor mosquito bites, they are too short-lived to be practical or affordable for routine use in low-income settings. New transfluthrin emanators, comprised simply of treated hessian fabric strips, have recently proven highly protective against outdoor-biting vectors of lymphatic filariasis, arboviruses and malaria, but their full protective lifespan, minimum dose requirements, and range of protection have not previously been assessed.
View Article and Find Full Text PDFBackground: Semi-field trials using laboratory-reared Anopheles arabiensis have shown that, delivering the volatile pyrethroid transfluthrin by absorption into hessian strips, consistently provided > 99% human protective efficacy against bites for 6 months without retreating. Here the impact of this approach upon human exposure to wild populations of vectors for both malaria and filariasis under full field conditions is assessed for the first time.
Methods: Transfluthrin-treated and untreated strips were placed around human volunteers conducting human landing catch in an outdoor environment in urban Dar es Salaam, where much human exposure to malaria and filariasis transmission occurs outdoors.
Malaria vector control relies on toxicity of insecticides used in long lasting insecticide treated nets and indoor residual spraying. This is despite evidence that sub-lethal insecticides reduce human-vector contact and malaria transmission. The impact of sub-lethal insecticides on host seeking and blood feeding of mosquitoes was measured.
View Article and Find Full Text PDFBackground: Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission.
View Article and Find Full Text PDFMosquito coils, vaporizer mats and emanators confer protection against mosquito bites through the spatial action of emanated vapor or airborne pyrethroid particles. These products dominate the pest control market; therefore, it is vital to characterize mosquito responses elicited by the chemical actives and their potential for disease prevention. The aim of this review was to determine effects of mosquito coils and emanators on mosquito responses that reduce human-vector contact and to propose scientific consensus on terminologies and methodologies used for evaluation of product formats that could contain spatial chemical actives, including indoor residual spraying (IRS), long lasting insecticide treated nets (LLINs) and insecticide treated materials (ITMs).
View Article and Find Full Text PDFBackground: Vapour phase spatial repellents deter mosquitoes from attacking one or more humans in a protected space. Simulation models indicate that high coverage of spatial repellents can enhance the impact of long - lasting insecticide nets (LLINs) and indoor residual spraying (IRS) where mosquito vectors commonly bite humans outdoors. Here we report a preliminary evaluation of an effective, user-friendly prototype product for delivering spatial repellents to protect against malaria vector mosquitoes.
View Article and Find Full Text PDFBackground: Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases.
Methodology: The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania.
Background: Malaria transmission in Africa occurs predominantly inside houses where the primary vectors prefer to feed. Human preference and investment in blocking of specific entry points for mosquitoes into houses was evaluated and compared with known entry point preferences of the mosquitoes themselves.
Methods: Cross-sectional household surveys were conducted in urban Dar es Salaam, Tanzania to estimate usage levels of available options for house proofing against mosquito entry, namely window screens, ceilings and blocking of eaves.
Background: Frequent, sensitive and accurate sampling of Anopheles mosquitoes is a prerequisite for effective management of malaria vector control programmes. The most reliable existing means to measure mosquito density is the human landing catch (HLC). However, the HLC technique raises major ethical concerns because of the necessity to expose humans to vectors of malaria and a variety of other pathogens.
View Article and Find Full Text PDF