The simultaneous separational control of motion of individual objects is vital to achieve high efficiency separation for biological analytes in biomedical applications. Here, we show the selective and directed movement of different populations of microbeads depending on their size in a flowless environment by means of a hexagonally structured soft-magnetic microchip platform. By adjusting strength and asymmetry of a modulated in-plane magnetic field, discrete and switchable movement patterns of two different types of beads above a magnetic surface structure are achieved.
View Article and Find Full Text PDF