Growth plate cartilage (GP) serves as a dynamic site of active mineralization and offers a unique opportunity to investigate the cell-regulated matrix mineralization process. Transmission electron microscopy (TEM) provides a means for the direct observation of these mechanisms, offering the necessary resolution and chemical analysis capabilities. However, as mineral crystallinity is prone to artifacts using aqueous fixation protocols, sample preparation techniques are critical to preserve the mineralized tissue in its native form.
View Article and Find Full Text PDFEmerging evidence suggests a significant role of gut microbiome in bone health. Aging is well recognized as a crucial factor influencing the gut microbiome. In this study, we investigated whether age-dependent microbial change contributes to age-related bone loss in CB6F1 mice.
View Article and Find Full Text PDFChondrocytes respond to mechanical stimuli by increasing their intracellular calcium concentration. The response depends on the cellular environment. Previous studies have investigated chondrocytes under slow strain rates or cells embedded in hydrogels, but the response of chondrocytes in their native environment under physiologically relevant cyclic loads and dynamic hydrostatic pressure has not been studied.
View Article and Find Full Text PDFAnat Rec (Hoboken)
November 2024
We compare the effects of burrowing behavior on appendicular bone structure in two Peromyscus (deer mouse) species. P. polionotus creates complex burrows in their territories, while P.
View Article and Find Full Text PDFAltered shape of the proximal femur (cam morphology) or acetabulum (pincer morphology) is indicative of femoroacetabular impingement, which can result in hip pain and osteoarthritis of the hip. As mechanical load during growth affects the resulting bone shape, there is strong evidence in males that cam morphology develops during skeletal growth while physes are open, rather than as an adaptation after growth plates are closed (skeletal maturity). This adaptation is particularly evident in athletes who participate at elite levels prior to skeletal maturity.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2024
This study aimed to determine gravitational and dynamic torques and muscle activity of the neck across a series of design parameters of head mounted displays (mass, center of mass, and counterweights) associated with virtual and augmented reality (VR/AR). Twenty young adult participants completed five movement types (Slow and Fast Flexion/Extension and Rotation, and Search) while wearing a custom-designed prototype headset that varied the three design parameters: display mass (0, 200, 500, and 750 g), distance of the display's center of mass in front of the eyes (approximately 1, 3, and 5 cm anteriorly), and counterweights of 0, 166, 332, and 500 g to balance the display mass of 500 g at 7 cm. Inverse dynamics of a link segment model of the head and headset provided estimates of the torques about the joint between the skull and the occiput-first cervical vertebrae (OC1) and joint between the C7 and T1 vertebrae (C7).
View Article and Find Full Text PDFNumerous studies have shown the detrimental health effects of tobacco smoking on bone volume and strength in human and animal models. Little is known regarding the impacts of e-cigarettes, a form of smoke-less nicotine intake, despite their growing population of users. This study uses murine models to evaluate the effects of exposure to e-cigarette aerosols (JUUL) on bone structure and strength through micro-CT imaging and mechanical testing.
View Article and Find Full Text PDFLamellar bone formed in individuals with moderate and severe osteogenesis imperfecta (OI) is often composed of lamellae that are structurally abnormal. Measuring the thickness of these lamellae can be helpful in assessing the effect of specific collagen and collagen-related mutations on OI bone synthesis. Manual measurement of lamellar thicknesses in large quantities is very time consuming.
View Article and Find Full Text PDFBackground: Abnormal prenatal hip joint loading can lead to compromised hip joint function. Early intervention is crucial for favorable outcomes.
Purpose: This study investigates the impact of treatment timing (initiation and duration) on cartilage growth and ossification in the proximal femur of infants with developmental dysplasia of the hip, a condition affecting newborns.
Far more publications are available for osteoarthritis of the knee than of the hip. Recognizing this research gap, the Arthritis Foundation, in partnership with the Hospital for Special Surgery, convened an in-person meeting of thought leaders to review the state of the science of and clinical approaches to hip osteoarthritis. This article summarizes the recommendations and clinical research gaps gleaned from 5 presentations given in the "how hip osteoarthritis begins" session of the 2023 Hip Osteoarthritis Clinical Studies Conference, which took place on February 17 and 18, 2023, in New York City.
View Article and Find Full Text PDFIntroduction: Hamstring injuries are the most prevalent non-contact soft tissue injury in sports, with a larger portion of injuries being recurrent. The sagittal plane running kinematics correlated to hamstring injury history has been well documented. However, analysis of frontal plane kinematics allows for observation of stability and symmetry.
View Article and Find Full Text PDFCam deformity of the proximal femur is a risk factor for early osteoarthritis. While cam morphology is related to mechanical force at a formative time in skeletal growth, the specific problematic forces contributing to the development of cam morphology remain unknown. Individuals with femoroacetabular impingement syndrome exhibit an increased anterior pelvic tilt during walking, which alters their hip joint forces.
View Article and Find Full Text PDFLamellar bone that forms in moderate and severe osteogenesis imperfecta (OI) is composed of structurally irregular lamellae compared to those in control bone. OI and control cortical bone fragments were prepared for light microscopy in standardized fashion: decalcified, embedded in plastic, sectioned and stained with toluidine blue. Polarization light microscopy (PLM) was used to demonstrate and quantify bright and dark lamellar thicknesses in cortical bone fragments from 5 patients with moderate to severe OI in whom type I collagen structural/molecular defects were detected and in control bone from 5 patients.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2022
Endochondral ossification, the process by which long bones grow in length, is regulated by mechanical forces. Computational models, specifically finite element models, have been used for decades to understand the role of mechanical loading on endochondral ossification. This perspective outlines the stages of model development in which models are used to: 1) explore phenomena, 2) explain pathologies, 3) predict clinical outcomes, and 4) design therapies.
View Article and Find Full Text PDFBiphasic poro-viscoelastic constitutive material model (BPVE) captures both the fluid flow dependent and independent behavior of cartilage under stress relaxation type indentation. A finite element model based on BPVE formulation was developed to explore the sensitivity of the model to Young's modulus, Poisson's ratio, permeability, and viscoelastic constitutive parameters expressed in terms of Prony series coefficients. Then we fit the numerical model to experimental force versus time curves from stress relaxation indents on bovine tibial plateaus to extract the material properties.
View Article and Find Full Text PDFMechanical stimulation is critical to maintaining bone mass and strength. Strain has been commonly thought of as the mechanical stimulus driving bone adaptation. However, numerous studies have hypothesized that fluid flow in the lacunar-canalicular system plays a role in mechanoadaptation.
View Article and Find Full Text PDFSegmentation of 3D images to identify cells and their molecular outputs can be difficult and tedious. Machine learning algorithms provide a promising alternative to manual analysis as emerging 3D image processing technology can save considerable time. For those unfamiliar with machine learning or 3D image analysis, the rapid advancement of the field can make navigating the newest software options confusing.
View Article and Find Full Text PDFMovement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl () forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis.
View Article and Find Full Text PDFAdolescent obesity has risen dramatically in the last few decades. While adult obesity may be osteoprotective, the effects of obesity during adolescence, which is a period of massive bone accrual, are not clear. We used a murine model of induced adolescent obesity to examine the structural, mechanical, and compositional differences between obese and healthy weight bone in 16-week-old female C57Bl6 mice.
View Article and Find Full Text PDFMechanical loading is a crucial factor in joint and bone development. Using a computational model, we investigated the role of mechanics on cartilage growth rate, ossification of the secondary center, formation of the growth plate, and overall bone shape. A computational algorithm was developed and implemented into finite element models to simulate the endochondral ossification for symmetric and asymmetric motion in a generic diarthrodial joint.
View Article and Find Full Text PDFAn upward trend in childhood obesity implies a great need to determine its effects, both immediate and long-term. Obesity is osteoprotective in adults, but we know very little about the effects of obesity on the growing skeleton, particularly its ability to adapt to load. The objective of this research is to assess bone mechanoadaptation in adolescent obese mice.
View Article and Find Full Text PDFBackground: Many children with cerebral palsy (CP) develop skeletal deformities during childhood. So far, it is unknown why some children with CP develop bony deformities whereas others do not. The aims of this study were to (i) investigate what loading characteristics lead to typical and pathological femoral growth, and (ii) evaluate why some children with CP develop femoral deformities whereas other do not.
View Article and Find Full Text PDF