Publications by authors named "Sheen V"

Previously, we reported global hypermethylation in DS might be attributed to the overexpression of HSA21 gene DNMT3L, which can enhance DNMT3A and DNMT3B activities in DNA methylation. To test this hypothesis, we compared the DNA methylation and RNA expression profiles of early-differentiated human neuroprogenitors with and without DNMT3L overexpression. We found DNMT3L overexpression only moderately increased the DNA methylation of limited genes, yet significantly altered global RNA expression of genes involved in neural differentiation.

View Article and Find Full Text PDF

Although neural progenitor proliferation along the ventricular zone is regulated by β-catenin through Wnt signaling, the cytoskeletal mechanisms that regulate expression and localization of these proteins are not well understood. Our prior studies have shown that loss of the actin-binding Filamin A (FlnA) and actin-nucleating protein Formin 2 (Fmn2) impairs endocytosis of low-density-lipoprotein-receptor-related protein 6 (Lrp6), thereby disrupting β-catenin activation, resulting in decreased brain size. Here, we report that activated RhoA-GTPase disengages Fmn2 N- to C-terminal binding to promote Fmn2 activation and redistribution into lysosomal vesicles.

View Article and Find Full Text PDF

Neural progenitor proliferation and cell fate decision from self-renewal to differentiation are crucial factors in determining brain size and morphology. The cytoskeletal dependent regulation of these processes is not entirely known. The actin-binding filamin A (FlnA) was shown to regulate proliferation of progenitors by directing changes in cell cycles proteins such as Cdk1 during G2/M phase.

View Article and Find Full Text PDF

The effects of actin dependent molecular mechanisms in coordinating cellular proliferation, migration and differentiation during embryogenesis are not well-understood. We have previously shown that actin-binding Filamin A (FlnA) and actin-nucleating Formin 2 (Fmn2) influence the development of the brain causing microcephaly in mice. In this study, we broaden this phenotype to explore the effects of these two proteins in the development of extra-CNS organ systems, including the gut, muscle, and skeleton.

View Article and Find Full Text PDF

Background: Morphometric analyses of biological features have become increasingly common in recent years with such analyses being subject to a large degree of observer bias, variability, and time consumption. While commercial software packages exist to perform these analyses, they are expensive, require extensive user training, and are usually dependent on the observer tracing the morphology.

New Method: To address these issues, we have developed a broadly applicable, no-cost ImageJ plugin we call 'BranchAnalysis2D/3D', to perform morphometric analyses of structures with branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary cilia.

View Article and Find Full Text PDF

Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias.

View Article and Find Full Text PDF

Actin-associated proteins regulate multiple cellular processes, including proliferation and differentiation, but the molecular mechanisms underlying these processes are unclear. Here, we report that the actin-binding protein filamin A (FlnA) physically interacts with the actin-nucleating protein formin 2 (Fmn2). Loss of FlnA and Fmn2 impairs proliferation, thereby generating multiple embryonic phenotypes, including microcephaly.

View Article and Find Full Text PDF

Background And Aims: The aims of our study were to determine whether routine blood tests, the aspartate aminotransferase (AST) to Platelet Ratio Index (APRI) and Fibrosis 4 (Fib-4) scores, were associated with advanced fibrosis and to create a novel model in liver transplant recipients with chronic hepatitis C virus (HCV).

Methods: We performed a cross sectional study of patients at The University of California at Los Angeles (UCLA) Medical Center who underwent liver transplantation for HCV. We used linear mixed effects models to analyze association between fibrosis severity and individual biochemical markers and mixed effects logistic regression to construct diagnostic models for advanced fibrosis (METAVIR F3-4).

View Article and Find Full Text PDF

Down syndrome (DS) is caused by a triplication of chromosome 21 (HSA21). Increased oxidative stress, decreased neurogenesis and synaptic dysfunction from HSA21 gene overexpression are thought to cause mental retardation, dementia and seizure in this disorder. Recent epigenetic studies have raised the possibility that DNA methylation has significant effects on DS neurodevelopment.

View Article and Find Full Text PDF

The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins.

View Article and Find Full Text PDF

The basic helix-loop-helix (bHLH) transcription factor Olig2 is crucial for mammalian central nervous system development. Human ortholog OLIG2 is located in the Down syndrome critical region in trisomy 21. To investigate the effect of Olig2 misexpression on brain development, we generated a developmentally regulated Olig2-overexpressing transgenic line with a Cre/loxP system.

View Article and Find Full Text PDF

Periventricular heterotopia (PH) is one of the most common malformations of cortical development (MCD). Nodules along the lateral ventricles of the brain, disruption of the ventricular lining, and a reduced brain size are hallmarks of this disorder. PH results in a disruption of the neuroependyma, inhibition of neural proliferation and differentiation, and altered neuronal migration.

View Article and Find Full Text PDF

Filamin B (FlnB) is an actin-binding protein thought to transduce signals from various membrane receptors and intracellular proteins onto the actin cytoskeleton. Formin1 (Fmn1) is an actin-nucleating protein, implicated in actin assembly and intracellular signaling. Human mutations in FLNB cause several skeletal disorders associated with dwarfism and early bone fusion.

View Article and Find Full Text PDF

Neural proliferation, migration and differentiation require reorganization of the actin cytoskeleton and regulation of vesicle trafficking to provide stability in maintaining cell adhesions, allow for changes in cell shape, and establishing cell polarity. Human disorders involving the actin-binding Filamin A (FLNA) and vesicle trafficking Brefeldin-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in these various developmental processes, resulting in a malformation of cortical development called periventricular heterotopia (nodules along the ventricular lining) and microcephaly (small brain). Here we discuss several recent reports from our laboratory that demonstrate a shared role for both proteins in actin-associated vesicle trafficking, which is required to maintain the expression and stability of cell adhesion and cell cycle associated molecules during cortical development.

View Article and Find Full Text PDF

Humans who harbor loss of function mutations in the actin-associated filamin B (FLNB) gene develop spondylocarpotarsal syndrome (SCT), a disorder characterized by dwarfism (delayed bone formation) and premature fusion of the vertebral, carpal and tarsal bones (premature differentiation). To better understand the cellular and molecular mechanisms governing these seemingly divergent processes, we generated and characterized FlnB knockdown ATDC5 cell lines. We found that FlnB knockdown led to reduced proliferation and enhanced differentiation in chondrocytes.

View Article and Find Full Text PDF

Periventricular heterotopias is a malformation of cortical development, characterized by ectopic neuronal nodules around ventricle lining and caused by an initial migration defect during early brain development. Human mutations in the Filamin A (FLNA) and ADP-ribosylation factor guanine exchange factor 2 [ARFGEF2; encoding brefeldin-A-inhibited guanine exchange factor-2 (BIG2)] genes give rise to this disorder. Previously, we have reported that Big2 inhibition impairs neuronal migration and binds to FlnA, and its loss promotes FlnA phosphorylation.

View Article and Find Full Text PDF

Background: Rett syndrome is a neurodevelopmental disorder that occurs in individuals with a mutation in the X-linked methyl-CpG-binding protein 2 (2MECP2) gene. 2MECP2 mutations produce a high degree of variability in the clinical phenotypes including the classic Rett features of head growth deceleration, psychomotor regression, deviant communicative ability, hand stereotypes, autonomic dysfunction, and seizures. Atypical forms of Rett such as those with preserved speech do not follow these characteristics.

View Article and Find Full Text PDF

Background & Aims: Colonic diverticulosis is the most common finding during routine colonoscopy, and patients often question the significance of these lesions. Guidelines state that these patients have a 10% to 25% lifetime risk of developing acute diverticulitis. However, this value was determined based on limited data, collected before population-based colonoscopy, so the true number of cases of diverticulosis was not known.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder is the most common neurobehavioral disorder in children and frequently associated with epilepsy. For patients with both conditions, methylphenidate remains a mainstay in the treatment of behavioral problems. Most studies demonstrate that methylphenidate is effective in treating children with well-controlled epilepsy, and that methylphenidate does not increase the risk of having seizures in patients with EEG abnormalities without epilepsy.

View Article and Find Full Text PDF

Background & Aims: Individuals with diverticulosis frequently also have irritable bowel syndrome (IBS), but there are no longitudinal data to associate acute diverticulitis with subsequent IBS, functional bowel disorders, or related emotional distress. In patients with postinfectious IBS, gastrointestinal disorders cause long-term symptoms, so we investigated whether diverticulitis might lead to IBS. We compared the incidence of IBS and functional bowel and related affective disorders among patients with diverticulitis.

View Article and Find Full Text PDF

Periventricular heterotopia (PH) is a human malformation of cortical development associated with gene mutations in ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2 encodes for Big2 protein) and Filamin A (FLNA). PH is thought to derive from neuroependymal disruption, but the extent to which neuronal migration contributes to this phenotype is unknown. Here, we show that Arfgef2 null mice develop PH and exhibit impaired neural migration with increased protein expression for both FlnA and phosphoFlnA at Ser2152.

View Article and Find Full Text PDF

Cytoskeleton-associated proteins play key roles not only in regulating cell morphology and migration but also in proliferation. Mutations in the cytoskeleton-associated gene filamin A (FlnA) cause the human disorder periventricular heterotopia (PH). PH is a disorder of neural stem cell development that is characterized by disruption of progenitors along the ventricular epithelium and subsequent formation of ectopic neuronal nodules.

View Article and Find Full Text PDF

Recently, we have developed a photopolymerizable poly(L-lysine) (PLL) that can be covalently incorporated into poly(ethylene glycol) diacrylate (PEGDA) hydrogels to improve their bioactivity by providing positive charges. To explore the potential of these PLL-grafted PEGDA hydrogels as a cell delivery vehicle and luminal filler in nerve guidance conduits for peripheral and central nerve regeneration, we varied the number of pendent PLL chains in the hydrogels by photo-cross-linking PEGDA with weight compositions of PLL (φ(PLL)) of 0, 1, 2, 3, and 5%. We further investigated the effect of PLL grafting density on E14 mouse neural progenitor cell (NPC) behavior including cell viability, attachment, proliferation, differentiation, and gene expression.

View Article and Find Full Text PDF

Mental retardation and early Alzheimer's disease (AD) have generally been attributed to progressive neuronal loss in the developing and mature Down syndrome (DS) brain. However, reduced neuronal production during development could also contribute to the smaller brain size and simplified gyral patterning seen in this disorder. Here, we show impairments in proliferation within the ventricular zone (VZ) of early DS fetal cortex and in cultured early passage DS human neural progenitors (HNPs).

View Article and Find Full Text PDF