Publications by authors named "Sheeba A Anteraper"

Autism and attention-deficit/hyperactivity disorder (ADHD) are comorbid neurodevelopmental disorders that share common and distinct neurobiological mechanisms, with disrupted brain connectivity patterns being a hallmark feature of both conditions. It is challenging to gain a mechanistic understanding of the underlying disorder, because brain connectivity changes in autism and ADHD are heterogeneous. The present resting state functional MRI (rs-fMRI) study focuses on investigating the shared and distinct resting state-fMRI connectivity (rsFC) patterns in autistic and ADHD adults using multi-voxel pattern analysis (MVPA).

View Article and Find Full Text PDF

To examine current clinical research on the use of transcranial magnetic stimulation (TMS) in the treatment of pediatric and young adult autism spectrum disorder in intellectually capable persons (IC-ASD). We searched peer-reviewed international literature to identify clinical trials investigating TMS as a treatment for behavioral and cognitive symptoms of IC-ASD. We identified sixteen studies and were able to conduct a meta-analysis on twelve of these studies.

View Article and Find Full Text PDF

Multivoxel pattern analysis (MVPA) has emerged as a powerful unbiased approach for generating seed regions of interest (ROIs) in resting-state functional connectivity (RSFC) analysis in a data-driven manner. Studies exploring RSFC in multiple sclerosis have produced diverse and often incongruent results. The aim of the present study was to investigate RSFC differences between people with relapsing-remitting multiple sclerosis (RRMS) and healthy controls (HC).

View Article and Find Full Text PDF

Purpose: Childhood obesity is a global health concern, with >340 million youth considered overweight or obese. In addition to contributing greatly to health care costs, excess adiposity associated with obesity is considered a major risk factor for premature mortality from cardiovascular and metabolic diseases and is also negatively associated with cognitive and brain health. A complementary line of research highlights the importance of cardiorespiratory fitness, a by-product of engaging in physical activity, on an abundance of health factors, including cognitive and brain health.

View Article and Find Full Text PDF

Sedentary behaviors are increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths worldwide. Understanding the mechanistic predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. It has been posited that humans have an innate attraction towards effort minimization and that inhibitory control is required to overcome this prepotent disposition.

View Article and Find Full Text PDF

Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study.

View Article and Find Full Text PDF

Enriching early life experiences (e.g., sport, art, music, volunteering, language learning) during a critical period of brain development may promote structural and functional brain changes that are still present decades later (>60 years).

View Article and Find Full Text PDF

Objective: The cerebellum serves a wide range of functions and is suggested to be composed of discrete regions dedicated to unique functions. We recently developed a new parcellation of the dentate nuclei (DN), the major output nuclei of the cerebellum, which optimally divides the structure into 3 functional territories that contribute uniquely to default-mode, motor-salience, and visual processing networks as indexed by resting-state functional connectivity (RsFc). Here we test for the first time whether RsFc differences in the DN, precede the onset of psychosis in individuals at risk of developing schizophrenia.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the central nervous system that results in a progressive loss of motor function and ultimately death. It is critical, yet also challenging, to develop non-invasive biomarkers to identify, localize, measure and/or track biological mechanisms implicated in ALS. Such biomarkers may also provide clues to identify potential molecular targets for future therapeutic trials.

View Article and Find Full Text PDF

Central nervous system (CNS) sequelae continue to be common in HIV-infected individuals despite combination antiretroviral therapy (cART). These sequelae include HIV-associated neurocognitive disorder (HAND) and virologic persistence in the CNS. Resting state functional magnetic resonance imaging (rsfMRI) is a widely used tool to examine the integrity of brain function and pathology.

View Article and Find Full Text PDF

Patients with schizophrenia spectrum disorders show disturbances in self-referential processing and associated neural circuits including the default mode network (DMN). These disturbances may precede the onset of psychosis and may underlie early social and emotional problems. In this study, we examined self-referential processing in a group of children (7-12 years) at familial high risk (FHR) for psychosis ( = 17), compared to an age and sex-matched group of healthy control (HC) children ( = 20).

View Article and Find Full Text PDF

Adolescents with anxiety disorders exhibit excessive emotional and somatic arousal. Neuroimaging studies have shown abnormal cerebral cortical activation and connectivity in this patient population. The specific role of cerebellar output circuitry, specifically the dentate nuclei (DN), in adolescent anxiety disorders remains largely unexplored.

View Article and Find Full Text PDF

Scholastic performance is the key metric by which schools measure student's academic success, and it is important to understand the neural-correlates associated with greater scholastic performance. This study examines resting-state functional connectivity (RsFc) associated with scholastic performance (reading and mathematics) in preadolescent children (7-9 years) using an unbiased whole-brain connectome-wide multi-voxel pattern analysis (MVPA). MVPA revealed four clusters associated with reading composite score, these clusters were then used for whole-brain seed-based RsFc analysis.

View Article and Find Full Text PDF

The combination of structural and functional analyses is a biologically valid approach that offers methodological advantages in autism spectrum disorder (ASD) neuroimaging science. The paucity of studies combining these methods constitutes an important knowledge gap. In this study, we investigate structural abnormalities and their associated functional differences in a developmentally homogeneous ASD cohort.

View Article and Find Full Text PDF

Importance: Understanding the neurodevelopmental trajectory of psychiatric symptoms is important for improving early identification, intervention, and prevention of mental disorders.

Objective: To test whether the strength of the coupling of activation between specific brain regions, as measured by resting-state functional magnetic resonance imaging (fMRI), predicted individual children's developmental trajectories in terms of attentional problems characteristic of attention-deficit/hyperactivity disorder and internalizing problems characteristics of major depressive disorder (MDD).

Design, Setting, And Participants: A community cohort of 94 children was recruited from Vanderbilt University between 2010 and 2013.

View Article and Find Full Text PDF

Multiple lines of evidence suggest that illness development in schizophrenia and other psychotic disorders predates the first psychotic episode by many years. In this study, we examined a sample of 15 pre-adolescent children, ages 7 through 12 years, who are at familial high-risk (FHR) because they have a parent or sibling with a history of schizophrenia or related psychotic disorder. Using multi-voxel pattern analysis (MVPA), a data-driven fMRI analysis, we assessed whole-brain differences in functional connectivity in the FHR sample as compared to an age- and sex-matched control (CON) group of 15 children without a family history of psychosis.

View Article and Find Full Text PDF

Jazz improvisation offers a model for creative cognition, as it involves the real-time creation of a novel, information-rich product. Previous research has shown that when musicians improvise, they recruit regions in the Default Mode Network (DMN) and Executive Control Network (ECN). Here, we ask whether these findings from task-fMRI studies might extend to intrinsic differences in resting state functional connectivity.

View Article and Find Full Text PDF

Anatomical connections link the cerebellar cortex with multiple sensory, motor, association, and paralimbic cerebral areas. The majority of fibers that exit cerebellar cortex synapse in dentate nuclei (DN) before reaching extracerebellar structures such as cerebral cortex, but the functional neuroanatomy of human DN remains largely unmapped. Neuroimaging research has redefined broad categories of functional division in the human brain showing that primary processing, attentional (task positive) processing, and default-mode (task negative) processing are three central poles of neural macroscale functional organization.

View Article and Find Full Text PDF

Cerebellar abnormalities are commonly reported in autism spectrum disorder (ASD). Dentate nuclei (DNs) are key structures in the anatomical circuits linking the cerebellum to the extracerebellum. Previous resting-state functional connectivity (RsFc) analyses reported DN abnormalities in high-functioning ASD (HF-ASD).

View Article and Find Full Text PDF

A patient diagnosed with developmental delay, intellectual disability, and autistic and obsessive-compulsive symptoms was found to have a posterior fossa arachnoid cyst (PFAC) compressing the cerebellum. The patient was referred to our Ataxia Unit for consideration of surgical drainage of the cyst to improve his clinical constellation. This scenario led to an in-depth analysis including a literature review, functional resting-state MRI analysis of our patient compared to a group of controls, and genetic testing.

View Article and Find Full Text PDF

Mutation or disruption of the SH3 and ankyrin repeat domains 3 (SHANK3) gene represents a highly penetrant, monogenic risk factor for autism spectrum disorder, and is a cause of Phelan-McDermid syndrome. Recent advances in gene editing have enabled the creation of genetically engineered non-human-primate models, which might better approximate the behavioural and neural phenotypes of autism spectrum disorder than do rodent models, and may lead to more effective treatments. Here we report CRISPR-Cas9-mediated generation of germline-transmissible mutations of SHANK3 in cynomolgus macaques (Macaca fascicularis) and their F1 offspring.

View Article and Find Full Text PDF

The emergence of prodromal symptoms of schizophrenia and their evolution into overt psychosis may stem from an aberrant functional reorganization of the brain during adolescence. To examine whether abnormalities in connectome organization precede psychosis onset, we performed a functional connectome analysis in a large cohort of medication-naive youth at risk for psychosis from the Shanghai At Risk for Psychosis (SHARP) study. The SHARP program is a longitudinal study of adolescents and young adults at Clinical High Risk (CHR) for psychosis, conducted at the Shanghai Mental Health Center in collaboration with neuroimaging laboratories at Harvard and MIT.

View Article and Find Full Text PDF

We examined how variation in working memory (WM) capacity due to aging or individual differences among young adults is associated with intrinsic or resting-state anticorrelations, particularly between (1) the medial prefrontal cortex (MPFC), a component of the default-mode network (DMN) that typically decreases in activation during external, attention-demanding tasks, and (2) the dorsolateral prefrontal cortex (DLPFC), a component of the fronto-parietal control network that supports executive functions and WM and typically increases in activation during attention-demanding tasks. We compared the magnitudes of MPFC-DLPFC anticorrelations between healthy younger and older participants (Experiment 1) and related the magnitudes of these anticorrelations to individual differences on two behavioral measures of WM capacity in two independent groups of young adults (Experiments 1 and 2). Relative to younger adults, older adults exhibited reductions in WM capacity and in MPFC-DLPFC anticorrelations.

View Article and Find Full Text PDF

The use of multichannel array head coils in functional and structural magnetic resonance imaging (MRI) provides increased signal-to-noise ratio (SNR), higher sensitivity, and parallel imaging capabilities. However, their benefits remain to be systematically explored in the context of resting-state functional connectivity MRI (fcMRI). In this study, we compare signal detectability within and between commercially available multichannel brain coils, a 32-Channel (32Ch), and a 12-Channel (12Ch) at 3T, in a high-resolution regime to accurately map resting-state networks.

View Article and Find Full Text PDF