Publications by authors named "Shee A"

We develop a static quantum embedding scheme that utilizes different levels of approximations to coupled cluster (CC) theory for an active fragment region and its environment. To reduce the computational cost, we solve the local fragment problem using a high-level CC method and address the environment problem with a lower-level Møller-Plesset (MP) perturbative method. This embedding approach inherits many conceptual developments from the hybrid second-order Møller-Plesset (MP2) and CC works by Nooijen [J.

View Article and Find Full Text PDF

We present the linear response theory for an elastic solid composed of active Brownian particles with intrinsic individual chirality, deriving both a normal mode formulation and a continuum elastic formulation. Using this theory, we compute analytically the velocity correlations and energy spectra under different conditions, showing an excellent agreement with simulations. We generate the corresponding phase diagram, identifying chiral and achiral disordered regimes (for high chirality or noise levels), as well as chiral and achiral states with mesoscopic-range order (for low chirality and noise).

View Article and Find Full Text PDF

Background: Low population density, geographic spread, limited infrastructure and higher costs are unique challenges in the delivery of healthcare in rural areas. During the COVID-19 pandemic, emergency powers adopted globally to slow the spread of transmission of the virus included population-wide lockdowns and restrictions upon movement, testing, contact tracing and vaccination programs. The aim of this research was to document the experiences of rural health service leaders as they prepared for the emergency pandemic response, and to derive from this the lessons learned for workforce preparedness to inform recommendations for future policy and emergency planning.

View Article and Find Full Text PDF

Oceanic eddies exhibit remarkable coherence and longevity compared to other transient features in the surrounding flow. They possess the ability to transport properties over extensive distances while maintaining their material identity intact. The Lagrangian Coherent Structure (LCS) framework has proven effective in capturing these coherent eddies, where they display a solid-body-like rotation.

View Article and Find Full Text PDF

We test the performance of self-consistent and several representative implementations of vertex-corrected (Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the scheme either systematically outperforms vertex-corrected or gives results of at least comparative quality.

View Article and Find Full Text PDF

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C.

View Article and Find Full Text PDF

Utilizing Argo data from 2003 to 2019, we examine thermohaline changes in the Indian Ocean within the upper 700 m. Widespread warming is observed except in the Southern Indian Ocean. Increasing salinity is obtained over all regions except the Bay of Bengal and Southern Indian Ocean.

View Article and Find Full Text PDF

We report and characterize the emergence of a noise-induced state of quenched disorder in a generic model describing a dense sheet of active polar disks. In this state, self-propelled disks become jammed with random orientations, only displaying small fluctuations about their mean positions and headings. The quenched disorder phase appears at intermediate noise levels, between moving polar order and standard dynamic disorder.

View Article and Find Full Text PDF

Embedding theories became important approaches used for accurate calculations of both molecules and solids. In these theories, a small chosen subset of orbitals is treated with an accurate method, called an impurity solver, capable of describing higher correlation effects. Ideally, such a chosen fragment should contain multiple orbitals responsible for the chemical and physical behavior of the compound.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) is a progressive joint disease and a leading source of chronic pain and disability. OA-bone marrow lesions (BMLs) are a recognised aetiopathological feature of KOA. Several intra-articular injectable therapies are recommended and used for management of KOA.

View Article and Find Full Text PDF

The different types of paper wastes constitute a major portion of municipal solid waste. The present study was aimed to justify the use of freshwater snails for the biological degradation of the paper waste and subsequent availability of cellulose from fecal matter. Three aquatic snails , , and were used to degrade newsprint, cardboard, and common writing paper as paper waste.

View Article and Find Full Text PDF

We consider the influence of active speed fluctuations on the dynamics of a d-dimensional active Brownian particle performing a persistent stochastic motion. The speed fluctuation brings about a dynamical anisotropy even in the absence of shape anisotropy. We use the Laplace transform of the Fokker-Planck equation to obtain exact expressions for time-dependent dynamical moments.

View Article and Find Full Text PDF

Within the self-energy embedding theory (SEET) framework, we study the coupled cluster Green's function (GFCC) method in two different contexts: as a method to treat either the system or the environment present in the embedding construction. Our study reveals that when GFCC is used to treat the environment we do not see improvement in total energies in comparison to the coupled cluster method itself. To rationalize this puzzling result, we analyze the performance of GFCC as an impurity solver with a series of transition metal oxides.

View Article and Find Full Text PDF

Hydrodechlorination (HDC) using noble-metal catalysts in the presence of H-donors is a promising tool for the treatment of water contaminated by halogenated organic compounds (HOCs). Cu is an attractive alternative catalyst to noble metals since it is cheaper than Pd, Rh, or Pt and more stable against deactivation. Cu with borohydride (BH) as reductant (copper-borohydride reduction system; CBRS) was applied here for the treatment of saturated aliphatic HOCs.

View Article and Find Full Text PDF

We report an implementation of the core-valence separation approach to the four-component relativistic Hamiltonian-based equation-of-motion coupled-cluster with singles and doubles theory (CVS-EOM-CCSD) for the calculation of relativistic core-ionization potentials and core-excitation energies. With this implementation, which is capable of exploiting double group symmetry, we investigate the effects of the different CVS-EOM-CCSD variants and the use of different Hamiltonians based on the exact two-component (X2C) framework on the energies of different core-ionized and -excited states in halogen- (CHI, HX, and X, X = Cl-At) and xenon-containing (Xe, XeF) species. Our results show that the X2C molecular mean-field approach [Sikkema, J.

View Article and Find Full Text PDF

We consider a model of an extensible semiflexible filament moving in two dimensions on a motility assay of motor proteins represented explicitly as active harmonic linkers. Their heads bind stochastically to polymer segments within a capture radius, and extend along the filament in a directed fashion before detaching. Both the extension and detachment rates are load-dependent and generate an active drive on the filament.

View Article and Find Full Text PDF

DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module.

View Article and Find Full Text PDF

It is well known that the path probabilities of Brownian motion correspond to the equilibrium configurational probabilities of flexible Gaussian polymers, while those of active Brownian motion correspond to in-extensible semiflexible polymers. Here we investigate the properties of the equilibrium polymer that corresponds to the trajectories of particles acted on simultaneously by both Brownian and active noise. Through this mapping we can see interesting crossovers in the mechanical properties of the polymer with changing contour length.

View Article and Find Full Text PDF

We investigate the performance of Green's function coupled cluster singles and doubles (CCSD) method as a solver for Green's function embedding methods. To develop an efficient CC solver, we construct the one-particle Green's function from the coupled cluster (CC) wave function based on the non-Hermitian Lanczos algorithm. The major advantage of this method is that its scaling does not depend on the number of frequency points.

View Article and Find Full Text PDF

A subsystem approach for obtaining electron binding energies in the valence region is presented and applied to the case of halide ions (X^{-},X=F-At) in water. This approach is based on electronic structure calculations combining the relativistic equation-of-motion coupled cluster method for electron detachment and density functional theory via the frozen density embedding approach, using structures from classical molecular dynamics with polarizable force fields for discrete systems (in our study, droplets containing the anion and 50 water molecules). Our results indicate that one can accurately capture both the large solvent effect observed for the halides and the splitting of their ionization signals due to the increasingly large spin-orbit coupling of the p_{3/2}-p_{1/2} manifold across the series, at an affordable computational cost.

View Article and Find Full Text PDF

We report in this paper an implementation of a 4-component relativistic Hamiltonian based Equation-of-Motion Coupled-Cluster with singles and doubles (EOM-CCSD) theory for the calculation of ionization potential, electron affinity, and excitation energy. In this work, we utilize the previously developed double group symmetry-based generalized tensor contraction scheme and also extend it in order to carry out tensor contractions involving non-totally symmetric and odd-ranked tensors. Several approximated spin-free and two-component Hamiltonians can also be accessed in this implementation.

View Article and Find Full Text PDF

The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J.

View Article and Find Full Text PDF

We present a formulation and implementation of the calculation of (orbital-unrelaxed) expectation values at the 4-component relativistic coupled cluster level with spin-orbit coupling included from the start. The Lagrangian-based analytical energy derivative technique constitutes the basic theoretical framework of this work. The key algorithms for single reference relativistic coupled cluster have been implemented using routines for general tensor contractions of up to rank-2 tensors in which the direct product decomposition scheme is employed to benefit from double group symmetry.

View Article and Find Full Text PDF