A significant challenge for effective biomass utilization and upgrading is catalysis. This research paper focuses on the conversion of xylose into xylitol, a valuable chemical used in the pharmaceutical and food industries. The primary objective is to design more efficient and cost-effective catalysts for this conversion process.
View Article and Find Full Text PDFThere is currently no theoretical study on the hydrogenation of xylose to xylitol on a catalyst's surface, limiting proper understanding of the reaction mechanisms and the design of effective catalysts. In this study, DFT techniques were used for the first time to investigate the mechanisms of xylose to xylitol conversion on five notable transition metal (TM) surfaces: Ru(0001), Pt(111), Pd(111), Rh(111), and Ni(111). Two transition state (TS) paths were investigated: TS Path A and TS Path B.
View Article and Find Full Text PDFA simple wet-chemical route for the preparation of core-shell-structured catalysts was developed to achieve high oxygen reduction reaction (ORR) activity with a low Pt loading amount. Nickel nitride (NiN) nanoparticles were used as earth-abundant metal-based cores to support thin Pt layers. To realize the site-selective formation of Pt layers on the NiN core, hydrogen molecules (H) were used as a mild reducing agent.
View Article and Find Full Text PDF