Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized nker of the ucleoskeleton and ytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue.
View Article and Find Full Text PDFThe dynamic morphology and mechanics of the cytoskeleton is determined by interacting networks of semiflexible actin filaments and rigid microtubules. Active rearrangement of networks of actin and microtubules can not only be driven by motor proteins but by changes to ionic conditions. For example, high concentrations of multivalent ions can induce bundling and crosslinking of both filaments.
View Article and Find Full Text PDFActin and microtubule filaments, with their auxiliary proteins, enable the cytoskeleton to carry out vital processes in the cell by tuning the organizational and mechanical properties of the network. Despite their critical importance and interactions in cells, we are only beginning to uncover information about the composite network. The challenge is due to the high complexity of combining actin, microtubules, and their hundreds of known associated proteins.
View Article and Find Full Text PDFThe cytoskeleton is able to precisely tune its structure and mechanics through interactions between semiflexible actin filaments, rigid microtubules and a suite of crosslinker proteins. However, the role that each of these components, as well as the interactions between them, plays in the dynamics of the composite cytoskeleton remains an open question. Here, we use optical tweezers microrheology and fluorescence confocal microscopy to reveal the surprising ways in which actin crosslinking tunes the viscoelasticity and mobility of actin-microtubule composites from steady-state to the highly nonlinear regime.
View Article and Find Full Text PDFThe cytoskeleton precisely tunes its mechanics by altering interactions between semiflexible actin filaments, rigid microtubules, and crosslinking proteins. We use optical tweezers microrheology and confocal microscopy to characterize how varying crosslinking motifs impact the mesoscale mechanics and mobility of actin-microtubule composites. We show that, upon subtle changes in crosslinking patterns, composites can exhibit two distinct classes of force response - primarily elastic versus more viscous.
View Article and Find Full Text PDFWe use optical tweezers microrheology and fluorescence microscopy to characterize the nonlinear mesoscale mechanics and mobility of in vitro co-entangled actin-microtubule composites. We create a suite of randomly oriented, well-mixed networks of actin and microtubules by co-polymerizing varying ratios of actin and tubulin in situ. To perturb each composite far from equilibrium, we use optical tweezers to displace an embedded microsphere a distance greater than the lengths of the filaments at a speed much faster than their intrinsic relaxation rates.
View Article and Find Full Text PDF