Rechargeable lithium-oxygen (Li-O) batteries are being considered as the next-generation energy storage systems due to their higher theoretical energy density. However, the practical application of Li-O batteries is hindered by slow kinetics and the formation of side products during the oxygen reduction and evolution reactions on the cathode. These reactions lead to high overpotentials during charging and discharging.
View Article and Find Full Text PDFThe solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte LiPSCl (LPSC-P) to form Li-Sb alloy.
View Article and Find Full Text PDFThe use of the "Holy Grail" lithium metal anode is pivotal to achieve superior energy density. However, the practice of a lithium metal anode faces practical challenges due to the thermodynamic instability of lithium metal and dendrite growth. Herein, an artificial stabilization of lithium metal was carried out via the thermal pyrolysis of the NHF salt, which generates HF(g) and NH(g).
View Article and Find Full Text PDFThe growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNiCoAlO (NCA-0), LiNiMnAlO (NMA-0), LiNiMnAlO (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Due to its good mechanical properties and high ionic conductivity, the sulfide-type solid electrolyte (SE) can potentially realize all-solid-state batteries (ASSBs). Nevertheless, challenges, including limited electrochemical stability, insufficient solid-solid contact with the electrode, and reactivity with lithium, must be addressed. These challenges contribute to dendrite growth and electrolyte reduction.
View Article and Find Full Text PDFA novel scalable Taylor-Couette reactor (TCR) synthesis method was employed to prepare Ta-modified LiNiCoMnO (T-NCM92) with different Ta contents. Through experiments and density functional theory (DFT) calculations, the phase and microstructure of Ta-modified NCM92 were analyzed, showing that Ta provides a bifunctional (doping and coating at one time) effect on LiNiCoMnO cathode material through a one-step synthesis process via a controlling suitable amount of Ta and Li-salt. Ta doping allows the tailoring of the microstructure, orientation, and morphology of the primary NCM92 particles, resulting in a needle-like shape with fine structures that considerably enhance Li ion diffusion and electrochemical charge/discharge stability.
View Article and Find Full Text PDFSulfide-based solid-state lithium-ion batteries (SSLIB) have attracted a lot of interest globally in the past few years for their high safety and high energy density over the traditional lithium-ion batteries. However, sulfide electrolytes (SEs) are moisture-sensitive which pose significant challenges in the material preparation and cell manufacturing. To the best of our knowledge, there is no tool available to probe the types and the strength of the basic sites in sulfide electrolytes, which is crucial for understanding the moisture stability of sulfide electrolytes.
View Article and Find Full Text PDFDendrite growth and low Coulombic efficiency impede the practical application of Li-metal batteries. As such, monitoring Li deposition and stripping in real-time is crucial to understanding the fundamental lithium growth kinetics. This work presents an optical microscopic technique that enables precise current density control and quantification of Li layer properties (i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Anode-free lithium metal batteries (AFLMBs) have been extensively studied due to their intrinsic high energy and safety without a metallic Li anode in cell design. Yet, the dendrite and dead-Li buildup continuously consumes the active Li upon cycling, leading to the poor lifespan of AFLMBs. Here, we introduce lithium oxalate into the cathode as an electrode additive providing a Li reservoir to extend the lifespan of AFLMBs.
View Article and Find Full Text PDFAll-solid-state batteries containing ceramic-polymer solid electrolytes are possible alternatives to lithium-metal batteries containing liquid electrolytes in terms of their safety, energy storage, and stability at elevated temperatures. In this study we prepared a garnet-type LiGaLaZrOF (LGLZOF) solid electrolyte modified with lithium Nafion (LiNf) and incorporated it into poly(vinylidene fluoride--hexafluoropropylene) (PVDF-HFP) matrixes. We used a solution-casting method to obtain bilayer (Bi-HSE) and trilayer (Tri-HSE) hybrid solid electrolytes.
View Article and Find Full Text PDFAnode-free lithium metal batteries are the most promising candidate to outperform lithium metal batteries due to higher energy density and reduced safety hazards with the absence of metallic lithium anode during initial cell fabrication. In general, researchers report capacity retention, reversible capacity, or rate capability of the cells to study the electrochemical performance of anode-free lithium metal batteries. However, evaluating the behavior of batteries from limited aspects may easily overlook other information hidden deep inside the meretricious results or even lead to misguided data interpretation.
View Article and Find Full Text PDFAlthough solid-state Li-metal batteries (LMBs) featuring polymer-based solid electrolytes might one day replace conventional Li-ion batteries, the poor Li-ion conductivity of solid polymer electrolytes at low temperatures has hindered their practical applications. Herein, we describe the first example of using a co-precipitation method in a Taylor flow reactor to produce the metal hydroxides of both the Ga/F dual-doped LiLaZrO (Ga/F-LLZO) ceramic electrolyte precursors and the LiMoO-modified NiCoMnO (LMO@T-LNCM 811) cathode materials for LMBs. The Li/Nafion (LiNf)-coated Ga/F-LLZO (LiNf@Ga/F-LLZO) ceramic filler was finely dispersed in the poly(vinylidene fluoride)/polyacrylonitrile/lithium bis(trifluoromethanesulfonimide)/succinonitrile matrix to give a trilayer composite polymer electrolyte (denoted "Tri-CPE") through a simple solution-casting.
View Article and Find Full Text PDFLiLaZrO (LLZO) garnet is one kind of solid electrolyte drawing extensive attention due to its good ionic conductivity, safety, and stability toward lithium metal anodes. However, the stability problem during synthesis and storage results in high interfacial resistance and prevents it from practical applications. We synthesized air-stable dual-doped LiLaGaZrNbO ((Ga, Nb)-LLZO) cubic-phase garnets with ionic conductivity of 9.
View Article and Find Full Text PDFThe mechanism of capacity fade of the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) composite positive electrode within a full cell was investigated using a combination of operando neutron powder diffraction and transmission X-ray microscopy methods, enabling the phase, crystallographic, and morphological evolution of the material during electrochemical cycling to be understood. The electrode was shown to initially consist of 73(1) wt % R3̅m LiMO2 with the remaining 27(1) wt % C2/m Li2MnO3 likely existing as an intergrowth. Cracking in the Li2MnO3·LiMO2 electrode particle under operando microscopy observation was revealed to be initiated by the solid-solution reaction of the LiMO2 phase on charge to 4.
View Article and Find Full Text PDF