Publications by authors named "Shcherbakova T"

Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions.

View Article and Find Full Text PDF

Inhibitors of human poly(ADP-ribose) polymerase (PARP) are considered as promising agents for treatment of cardiovascular, neurological, and other diseases accompanied by inflammation and oxidative stress. Previously, the ability of natural compounds 7-methylguanine (7mGua) and 8-hydroxy-7-methylguanine (8h7mGua) to suppress activity of the recombinant PARP protein was demonstrated. In the present work, we have investigated the possibility of PARP-inhibitory and cytoprotective action of 7mGua and 8h7mGua against the rat cardiomyoblast cultures (undifferentiated and differentiated H9c2).

View Article and Find Full Text PDF

As a result of the computer screening of a library of sulfo-substituted compounds, molecules capable of binding to the active site of transketolase from were identified. An experimental verification of the inhibitory activity of the most promising compound, STK045765, against a highly purified recombinant enzyme preparation was carried out. It was shown that the STK045765 molecule competes for the binding site of the pyrophosphate group of the thiamine diphosphate cofactor and, at a micromolar concentrations, is able to suppress the activity of mycobacterial transketolase.

View Article and Find Full Text PDF

Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor.

View Article and Find Full Text PDF

Transketolase, an enzyme of the pentose phosphate pathway, plays an important role in the functioning of mycobacteria. Using plasmid pET-19b carrying the gene of transketolase from and an additional histidine tag, we isolated and purified recombinant transketolase and determined the conditions for obtaining the apoform of the protein. The Michaelis constants were evaluated for the thiamine diphosphate cofactor in the presence of magnesium and calcium ions.

View Article and Find Full Text PDF

7-Methylguanine (7-MG) competitively inhibits the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) and RNA-modifying enzyme tRNA-guanine transglycosylase (TGT) and represents a potential anticancer drug candidate. Furthermore, as a natural compound, it could escape the serious side effects characteristic for approved synthetic PARP inhibitors. Here we present a comprehensive study of toxicological and carcinogenic properties of 7-MG.

View Article and Find Full Text PDF

Phoronids are marine benthic animals that live in tubes in soft sediment or hard substrata; the phoronids form the tubes by digging or boring. Epidermal glands produce much of the material of the tube, which is completely imbedded in the soft sediment or hard substrata. The structure of phoronid tubes has not been previously studied in detail.

View Article and Find Full Text PDF

Endolithic microbial communities survive nutrient and energy deficient conditions while contributing to the weathering of their mineral substrate. This study examined the mineral composition and microbial communities of fully serpentinized weathered rock from 0.1 to 6.

View Article and Find Full Text PDF

,-transpeptidase 2 from plays a key role in the formation of nonclassical 3-3 peptidoglycan cross-links in a pathogen's cell wall making it resistant to a broad range of penicillin antibiotics. The conditions of cultivation, isolation, and purification of recombinant ,-transpeptidase 2 from have been optimized in this study. Oxidation of the free SH groups of catalytic cysteine Cys354 is an important factor causing the inactivation of the enzyme, which occurs during both the expression and storage of enzyme preparations.

View Article and Find Full Text PDF

The results of the first study on the fine structure of agglutinated tubes of the family Terebellidae are presented.

View Article and Find Full Text PDF

Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts.

View Article and Find Full Text PDF

The effects of mutations in bacteriophage T4 genes uvsX and 49 on the double-strand break (DSB)-promoted recombination were studied in crosses, in which DSBs were induced site-specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i×ets1 and in three-factor crosses of the type i×ets1 a6, where ets1 is an insertion in the rIIB gene carrying the cleavage site for SegC; i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site, and a6 is rIIA point mutation located at 2040 bp from ets1. The frequency/distance relationships were obtained in crosses of the wild-type phage and of the amber mutant S17 (gene uvsX) and the double mutant S17 E727 (genes uvsX and 49).

View Article and Find Full Text PDF

In previous papers we described an extra recombination mechanism in T4 phage, which contributed to general recombination only when particular mutations were used as geneticmarkers (high recombination or HR markers), whereas it was practically inactive towards other rIIB mutations (low recombination or LR markers). This marker-dependent recombination pathway was identified as a repair of mismatches in recombination heteroduplexes. We suggested that the first step in this pathway, recognition and incision of the mismatch, is performed by endonuclease VII (endo VII) encoded by the T4 gene 49.

View Article and Find Full Text PDF

The double-strand break (DSB) repair via homologous recombination is generally construed as a high-fidelity process. However, some molecular genetic observations show that the recombination and the recombinational DSB repair may be mutagenic and even highly mutagenic. Here we developed an effective and precise method for studying the fidelity of DSB repair in vivo by combining DSBs produced site-specifically by the SegC endonuclease with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants.

View Article and Find Full Text PDF

A method for in vivo studying the fidelity of DNA double-strand break (DSB) repair in bacteriophage T4 has been developed. The frequency of reversion of rII mutations to the wild phenotype was measured in i segC+ x i ets 1 segCDelta crosses, where ets 1 is an insertion in the initial part of the rII gene carrying a sequence recognized by SegC endonuclease; i designates a rIIB or rIIA mutation located at some distance from ets 1, and segCDelta is a deletion in the segC gene. In such cross, a DSB occurs in the site of ets 1.

View Article and Find Full Text PDF

2-Oxoglutarate dehydrogenase (OGDH) is the first and rate-limiting component of the multienzyme OGDH complex (OGDHC) whose malfunction is associated with neurodegeneration. The essential role of this complex in the degradation of glucose and glutamate, which have specific significance in brain, raises questions about the existence of brain-specific OGDHC isoenzyme(s). We purified OGDHC from extracts of brain or heart mitochondria using the same procedure of poly(ethylene glycol) fractionation, followed by size-exclusion chromatography.

View Article and Find Full Text PDF

The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing.

View Article and Find Full Text PDF

Thermal denaturation of penicillin acylase (PA) from Escherichia coli has been studied by high-sensitivity differential scanning calorimetry as a function of heating rate, pH and urea concentration. It is shown to be irreversible and kinetically controlled. Upon decrease in the heating rate from 2 to 0.

View Article and Find Full Text PDF

The role of 3'-5' exonucleases in double-strand break (DSB)-promoted recombination was studied in crosses of bacteriophage T4, in which DSBs were induced site specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i x ets1, where ets1 designates an insertion in the rIIB gene carrying the cleavage site for SegC and i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site. The frequency/distance relationship was obtained in crosses of the wild-type phage and dexA1 (deficiency in deoxyribonuclease A), D219A (deficiency in the proofreading exonuclease of DNA polymerase), and tsL42 (antimutator allele of DNA polymerase) mutants.

View Article and Find Full Text PDF

Coordination of DNA ends during double-strand break (DSB) repair was studied in crosses of bacteriophage T4 in which DSBs were induced site-specifically by SegC endonuclease in the DNA of only one of the parents. Coupling of the genetic exchanges to the left and to the right of the DSB was measured in the wild-type genetic background as well as in T4 strains bearing mutations in several recombination genes: 47, uvsX, uvsW, 59, 39 and 61. The observed quantitative correlation between the degree of coupling and position of the recombining markers in relation to the DSB point implies that the two variants of the splice/patch-coupling (SPC) pathway, the "sequential SPC" and the "SPC with fork collision", operate during DSB repair.

View Article and Find Full Text PDF

Sequencing of fragments of genes coding for silicic acid transport (SIT) proteins of diatoms of evolutionary distant classes (centric Chaetoceros muelleri Lemmermann, pennate araphid Synedra acus Kützing, pennate raphid Phaeodactylum tricornutum Bohlin, and pennate with keeled raphe system Cylindrotheca fusiformis Reimann et Lewin), revealed the presence in these proteins of a conservative amino acid motif CMLD. Hydropathy profiles suggest that CMLD occupies a position between two transmembrane strands which do not contain lysine and arginine residues. The two strands are good candidates for the role of the channel along which transport of silicic acid occurs.

View Article and Find Full Text PDF

Objectives: The aim of our investigation was to study the HIV-1 env V3 loop sequences of the subtype A variant of the virus actively circulating in the territory of Eastern Europe (A1-EE).

Design: It appears that the characteristics of HIV-1 V3 loop sequences of the thoroughly studied subtype B strains determine the viruses tropism and phenotype. We were interested to find out to what extent these trends are preserved with the subtype A isolates spread in Eastern Europe.

View Article and Find Full Text PDF

Nucleophile reactivity of two most known nuclei of penicillins and cephalosporins, 6-aminopenicillanic (6-APA) and 7-aminodesacetoxycephalosporanic (7-ADCA) acids, was quantitatively characterized. In penicillin acylase (PA)-catalyzed acyl transfer reactions the relative reactivity of the added nucleophile compared to the water (i.e.

View Article and Find Full Text PDF