This study was designed to extend the shelf life of fruits and vegetables through a novel technique based on utilization of microbially driven enzyme glucose oxidase and casting a fine layer of hydrogen peroxide on the food item that protected the fruit from decay. The produced nanoparticles (ZnO, Ag) were ligated with Glucose Oxidize (GOx) purified from Aspergillus niger. Post ligation studies revealed that ligated enzymes display relatively enhanced activity.
View Article and Find Full Text PDFDiabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities.
View Article and Find Full Text PDFFor the shelf life extension of fruits, we envisioned a novel antimicrobial approach that is based on the production of a thin layer of hydrogen peroxide at the surface of food by utilizing the bioactivity of glucose oxidase (GOx). The enzyme, purified from Aspergillus Niger, was immobilized on zinc oxide nanoparticles and then suspended in a buffer to prepare a spraying solution of GOx/ZnONPs. Post-immobilization analyses indicated that immobilized enzyme showed higher activity as compared to the free enzyme.
View Article and Find Full Text PDF