The study focuses on developing and evaluating 3D biomimetic fibrous scaffolds to enhance osteoblast differentiation and bone tissue regeneration. Utilizing a synergistic approach, biological and chemical factors were compartmentalized within the fibrous scaffolds through co-axial electrospinning. Bioactive glass (BG) was used for osteo-conductivity, and Bone-Conditioned Medium (BCM) for osteoinduction.
View Article and Find Full Text PDFDevelopment of a Multi-layered (ML) nanofibers (NFs) scaffold by combining advanced materials to address the diverse needs of wound healing offers a comprehensive solution. In this study, a ML scaffold composed of amine functionalized polyacrylonitrile (AFP) NFs membrane as base layer, TiO NPs (T) as middle layer, and chitosan (CS) NFs membrane as contact layer was fabricated sequentially by electrospinning, surface functionalization and electrospraying to promote the wound healing. The multi-layered NFs scaffold (ML AFPT-CS) demonstrated adequate morphology, porosity, surface roughness and hydrophilicity with a water contact angle of 41.
View Article and Find Full Text PDF