Overgrazing and climate change are the main causes of grassland degradation, and grazing exclusion is one of the most common measures for restoring degraded grasslands worldwide. Soil fungi can respond rapidly to environmental stresses, but the response of different grassland types to grazing control has not been uniformly determined. Three grassland types (temperate desert, temperate steppe grassland, and mountain meadow) that were closed for grazing exclusion for 9 years were used to study the effects of grazing exclusion on soil nutrients as well as fungal community structure in the three grassland types.
View Article and Find Full Text PDFSci Bull (Beijing)
July 2020
Vegetation maps are important sources of information for biodiversity conservation, ecological studies, vegetation management and restoration, and national strategic decision making. The current Vegetation Map of China (1:1000000) was generated by a team of more than 250 scientists in an effort that lasted over 20 years starting in the 1980s. However, the vegetation distribution of China has experienced drastic changes during the rapid development of China in the last three decades, and it urgently needs to be updated to better represent the distribution of current vegetation types.
View Article and Find Full Text PDFCool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China.
View Article and Find Full Text PDFZhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao
June 2004
By measuring chlorophyll fluorescence, the effects of NaCl treatment on the maximal efficiency and heat tolerance of PSII were examined in leaves of Rumex seedlings. NaCl 200 mmol/L treatment had no effect on the maximal efficiency of PSII, but increased the heat tolerance of PSII in Rumex leaves. Compared with control leaves, the heat stress-induced decrease in F(v)/F(m) and the increase in F(k)/F(j) ratio were less in NaCl-treated leaves.
View Article and Find Full Text PDFA study was conducted, using chlorophyll fluorescence, rapid fluorescence induction kinetics, and polyphasic fluorescence transients, to determine the effect of salt treatment and heat stress on PSII photochemistry in Rumex leaves. Salt treatment was accomplished by adding NaCl solutions of different concentrations ranging from 50 to 200 mmol/L. Heat stress was induced by exposing the plant leaves to temperatures ranging from 29 to 47 degrees C.
View Article and Find Full Text PDF