Publications by authors named "Shaza Zaghlool"

Article Synopsis
  • This study integrates 18 advanced omics technologies using samples from 391 participants to analyze complex physiological processes and pathologies related to diabetes.* -
  • With over 6,000 molecular traits and various genetic and epigenetic factors, the research establishes a comprehensive molecular network showcasing significant correlations between different traits in biological fluids.* -
  • The findings not only shed light on diabetes subtypes but also provide an open-access web interface for users to explore the molecular data and generate new hypotheses.*
View Article and Find Full Text PDF

Thousands of proteins circulate in the bloodstream; identifying those which associate with weight and intervention-induced weight loss may help explain mechanisms of diseases associated with adiposity. We aimed to identify consistent protein signatures of weight loss across independent studies capturing changes in body mass index (BMI). We analysed proteomic data from studies implementing caloric restriction (Diabetes Remission Clinical trial) and bariatric surgery (By-Band-Sleeve), using SomaLogic and Olink Explore1536 technologies, respectively.

View Article and Find Full Text PDF

Background: Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic disorder caused by variants in genes involved in the function of the primary cilium. We have harnessed genomics to identify BBS and ophthalmic technologies to describe novel features of BBS.

Case Presentation: A patient with an unclear diagnosis of syndromic type 2 diabetes mellitus, another affected sibling and unaffected siblings and parents were sequenced using DNA extracted from saliva samples.

View Article and Find Full Text PDF
Article Synopsis
  • Type 2 diabetes (T2D) has different causes and effects, which influence how it develops and is treated.
  • A study identified four subtypes of T2D: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild obesity-related (MOD), and mild age-related (MARD) diabetes.
  • The research also applied a clustering approach to the Qatar Biobank and found unique molecular profiles for each subtype, helping to better understand their specific biological mechanisms.
View Article and Find Full Text PDF

Genome-wide association studies (GWAS) with non-targeted metabolomics have identified many genetic loci of biomedical interest. However, metabolites with a high degree of missingness, such as drug metabolites and xenobiotics, are often excluded from such studies due to a lack of statistical power and higher uncertainty in their quantification. Here we propose ratios between related drug metabolites as GWAS phenotypes that can drastically increase power to detect genetic associations between pairs of biochemically related molecules.

View Article and Find Full Text PDF

Modern metabolomics platforms are able to identify many drug-related metabolites in blood samples. Applied to population-based biobank studies, the detection of drug metabolites can then be used as a proxy for medication use or serve as a validation tool for questionnaire-based health assessments. However, it is not clear how well detection of drug metabolites in blood samples matches information on self-reported medication provided by study participants.

View Article and Find Full Text PDF

Pediatric medulloblastomas (MBs) are the most common type of malignant brain tumors in children. They are among the most aggressive types of tumors due to their potential for metastasis. Although this disease was initially considered a single disease, pediatric MBs can be considerably heterogeneous.

View Article and Find Full Text PDF

Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases.

View Article and Find Full Text PDF

Background: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed.

Methods: A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers.

View Article and Find Full Text PDF

Background: The metabolic syndrome (MetS), defined by the simultaneous clustering of cardio-metabolic risk factors, is a significant worldwide public health burden with an estimated 25% prevalence worldwide. The pathogenesis of MetS is not entirely clear and the use of molecular level data could help uncover common pathogenic pathways behind the observed clustering.

Methods: Using a highly multiplexed aptamer-based affinity proteomics platform, we examined associations between plasma proteins and prevalent and incident MetS in the KORA cohort (n = 998) and replicated our results for prevalent MetS in the HUNT3 study (n = 923).

View Article and Find Full Text PDF

Blood circulating proteins are confounded readouts of the biological processes that occur in different tissues and organs. Many proteins have been linked to complex disorders and are also under substantial genetic control. Here, we investigate the associations between over 1000 blood circulating proteins and body mass index (BMI) in three studies including over 4600 participants.

View Article and Find Full Text PDF

The increasing prevalence of type 2 diabetes poses a major challenge to societies worldwide. Blood-based factors like serum proteins are in contact with every organ in the body to mediate global homeostasis and may thus directly regulate complex processes such as aging and the development of common chronic diseases. We applied a data-driven proteomics approach, measuring serum levels of 4,137 proteins in 5,438 elderly Icelanders, and identified 536 proteins associated with prevalent and/or incident type 2 diabetes.

View Article and Find Full Text PDF

DNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance.

View Article and Find Full Text PDF

Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.

View Article and Find Full Text PDF

Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health, lifestyle and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body's response to disease or environmental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints.

View Article and Find Full Text PDF

Background: Family-based designs, from twin studies to isolated populations with their complex genealogical data, are a valuable resource for genetic studies of heritable molecular biomarkers. Existing software for family-based studies have mainly focused on facilitating association between response phenotypes and genetic markers, and no user-friendly tools are at present available to straightforwardly extend association studies in related samples to large datasets of generic quantitative data, as those generated by current -omics technologies.

Results: We developed PopPAnTe, a user-friendly Java program, which evaluates the association of quantitative data in related samples.

View Article and Find Full Text PDF

Background: Environmentally influenced phenotypes, such as obesity and insulin resistance, can be transmitted over multiple generations. Epigenetic modifications, such as methylation of DNA cytosine-guanine (CpG) pairs, may be carriers of inherited information. At the population level, the methylation state of such "heritable" CpG sites is expected to follow a trimodal distribution, and their mode of inheritance should be Mendelian.

View Article and Find Full Text PDF

Background: The prevalence of type 2 diabetes (T2D) and obesity has dramatically increased within a few generations, reaching epidemic levels. In addition to genetic risk factors, epigenetic mechanisms triggered by changing environment are investigated for their role in the pathogenesis of these complex diseases. Epigenome-wide association studies (EWASs) have revealed significant associations of T2D, obesity, and BMI with DNA methylation.

View Article and Find Full Text PDF

Background: Modification of DNA by methylation of cytosines at CpG dinucleotides is a widespread phenomenon that leads to changes in gene expression, thereby influencing and regulating many biological processes. Recent technical advances in the genome-wide determination of single-base DNA-methylation enabled epigenome-wide association studies (EWASs). Early EWASs established robust associations between age and gender with the degree of CpG methylation at specific sites.

View Article and Find Full Text PDF

Dynamic Causal Modeling (DCM) can be used to quantify cognitive function in individuals as effective connectivity. However, ambiguity among subjects in the number and location of discernible active regions prevents all candidate models from being compared in all subjects, precluding the use of DCM as an individual cognitive phenotyping tool. This paper proposes a solution to this problem by treating missing regions in the first-level analysis as missing data, and performing estimation of the time course associated with any missing region using one of four candidate methods: zero-filling, average-filling, noise-filling using a fixed stochastic process, or one estimated using expectation-maximization.

View Article and Find Full Text PDF