Background: The interactions between bacterial pathogens and host cells are characterized by a multitude of complexities, leading to a wide range of heterogeneous outcomes. Despite extensive research, we still have a limited understanding of how bacterial motility in complex environments impacts their ability to tolerate antibiotics and adhere to mammalian cell surfaces. The challenge lies in unraveling the complexity of these interactions and developing quantitative microscopy approaches to predict the behavior of bacterial populations.
View Article and Find Full Text PDFCellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients.
View Article and Find Full Text PDFAcquired drug tolerance has been a major challenge in cancer therapy. Recent evidence has revealed the existence of slow-cycling persister cells that survive drug treatments and give rise to multi-drug-tolerant mutants in cancer. Cells in this dynamic persister state can escape drug treatment by undergoing various epigenetic changes, which may result in a transient metabolic rewiring.
View Article and Find Full Text PDF