Publications by authors named "Shayna Sandhaus"

Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models.

View Article and Find Full Text PDF

In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)(OCO)]Cl·6HO 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)(OCO)]Cl·6HO 2 was used to produce anhydrous [Co(phen)(HO)](NO)3. Subsequently, anhydrous [Co(phen)(HO)](NO)3 was reacted with MeATSC 1 to produce [Co(phen)(MeATSC)](NO)·1.

View Article and Find Full Text PDF

Topoisomerases are important targets for antibacterial and anticancer therapies. Bacterial topoisomerase I remains to be exploited for antibiotics that can be used in the clinic. Inhibitors of bacterial topoisomerase I may provide leads for novel antibacterial drugs against pathogens resistant to current antibiotics.

View Article and Find Full Text PDF

Bacterial topoisomerase functions are required for regulation of DNA supercoiling and overcoming the DNA topological barriers that are encountered during many vital cellular processes. DNA gyrase and topoisomerase IV of the type IIA bacterial topoisomerase family are important clinical targets for antibacterial therapy. Topoisomerase I, belonging to the type IA topoisomerase family, has recently been validated as a potential antitubercular target.

View Article and Find Full Text PDF

A novel complex, [Cu(acetylethTSC)Cl]Cl•0.25CHOH (where acetylethTSC = ()--ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. studies showed that complex acted as a poison inhibitor of human topoisomerase IIα, which may account for the observed anti-cancer effects.

View Article and Find Full Text PDF

Type IA topoisomerase activities are essential for resolving DNA topological barriers via an enzyme-mediated transient single strand DNA break. Accumulation of topoisomerase DNA cleavage product can lead to cell death or genomic rearrangement. Many antibacterial and anticancer drugs act as topoisomerase poison inhibitors that form stabilized ternary complexes with the topoisomerase covalent intermediate, so it is desirable to identify such inhibitors for type IA topoisomerases.

View Article and Find Full Text PDF

On the basis of recently reported abyssinone II and olympicin A, a series of chemically modified flavonoid phytochemicals were synthesized and evaluated against Mycobacterium tuberculosis and a panel of Gram-positive and -negative bacterial pathogens. Some of the synthesized compounds exhibited good antibacterial activities against Gram-positive pathogens including methicillin resistant Staphylococcus aureus with minimum inhibitory concentration as low as 0.39 μg/mL.

View Article and Find Full Text PDF