Evolutionary biologists have long been interested in parsing out the roles of genetics, plasticity and their interaction on adaptive trait divergence. Since males and females often have different ecological and reproductive roles, separating how their traits are shaped by interactions between their genes and environment is necessary and important. Here, we disentangle the sex-specific effects of genetic divergence, developmental plasticity, social learning and contextual plasticity on foraging behaviour in Trinidadian guppies () adapted to high- or low-predation habitats.
View Article and Find Full Text PDFBehavioural plasticity is a major driver in the early stages of adaptation, but its effects in mediating evolution remain elusive because behavioural plasticity itself can evolve. In this study, we investigated how male Trinidadian guppies (Poecilia reticulata) adapted to different predation regimes diverged in behavioural plasticity of their mating tactic. We reared F2 juveniles of high- or low-predation population origins with different combinations of social and predator cues and assayed their mating behaviour upon sexual maturity.
View Article and Find Full Text PDF