Publications by authors named "Shayn Peirce-Cottler"

Background: The microvasculature of the central nervous system (CNS), which delivers oxygen and nutrients and forms a critical barrier protecting the CNS, is deleteriously affected by both Alzheimer's Disease (AD) and Type 2 Diabetes (T2D). Previous studies have shown pericyte dropout and vessel constriction in brain capillaries in AD, while other studies have shown pericyte bridging and dropout in retinal capillaries in T2D. T2D patients have increased risk of AD, suggesting potentially related microvascular pathological mechanisms.

View Article and Find Full Text PDF

With the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models.

View Article and Find Full Text PDF

The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy, particularly platinums, has been found to promote changes in lymphatic systems that could unintentionally enhance cancer malignancy instead of just inhibiting tumor growth.
  • In experiments with mouse models and human patients, platinums induced systemic lymphangiogenesis, which is the formation of new lymphatic vessels, and this effect was shown to be dose-dependent and long-lasting.
  • The study suggests that blocking these lymphatic changes with VEGFR3 inhibitors could improve treatment outcomes, advocating for adjustments in cancer therapies that involve platinum-based drugs.
View Article and Find Full Text PDF

The purinergic receptor P2Y2 binds ATP to control chemotaxis of myeloid cells, and global P2Y2 receptor knockout mice are protected in models of acute inflammation. Chronic inflammation mediated by macrophages and other immune cells in adipose tissue contributes to the development of insulin resistance. Here, we investigate whether mice lacking P2Y2 receptors on myeloid cells are protected against acute and chronic inflammation.

View Article and Find Full Text PDF

The long-term management of type-1 diabetes (T1D) is currently achieved through lifelong exogenous insulin injections. Although there is no cure for T1D, transplantation of pancreatic islets of Langerhans has the potential to restore normal endocrine function versus the morbidity of hypoglycemic unawareness that is commonly associated with sudden death among fragile diabetics. However, since endocrine islet tissues form a small proportion of the pancreas, sufficient islet numbers can be reached only by combining islets from multiple organ donors and the transplant plug contains significantly high levels of exocrine acinar tissue, thereby exacerbating immune responses.

View Article and Find Full Text PDF

Background: Biointegration, a concept involving a dynamic interplay among three processes-inflammation, cellular infiltration, and angiogenesis-is key to understanding the interaction between acellular dermal matrices and the host. The current standard for evaluating acellular dermal matrix biointegration involves histologic analysis at fixed time points; however, the authors' approach uses advanced imaging techniques to serially assess biointegration in real time.

Methods: The authors have adapted two advanced imaging techniques-two-photon microscopy and photoacoustic microscopy-to investigate biointegration in a murine deepithelialized dorsal skin-fold window chamber model, specifically engineered to recapitulate the host microenvironment of acellular dermal matrix-assisted breast reconstruction.

View Article and Find Full Text PDF

Objective: Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis.

View Article and Find Full Text PDF

Biomaterial-mediated controlled release of soluble signaling molecules is a tissue engineering approach to spatially control processes of inflammation, microvascular remodeling and host cell recruitment, and to generate biochemical gradients in vivo. Lipid mediators, such as sphingosine 1-phosphate (S1P), are recognized for their essential roles in spatial guidance, signaling and highly regulated endogenous gradients. S1P and pharmacological analogs such as FTY720 are therapeutically attractive targets for their critical roles in the trafficking of cells between blood and tissue spaces, both physiologically and pathophysiologically.

View Article and Find Full Text PDF

Background: Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of nitric oxide-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF.

View Article and Find Full Text PDF

Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45(+)CD11b(+)Gr1(+)Ly6C(+) inflammatory and CD45(+)CD11b(+)Gr1(-)Ly6C(-) anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels.

View Article and Find Full Text PDF

Introduction: Otoscopy is an important skill in diagnosing conditions of the middle ear. This study evaluated the ability of a novel ear simulator to teach medical students diagnostic and pneumatic otoscopy. We hypothesized that exposure to this simulator improves the ability of medical students to apply an appropriate pneumatic pressure during insufflation and accurately identify the presence of a middle ear effusion in a simulated setting.

View Article and Find Full Text PDF