Publications by authors named "Shaymaa Al-Shukri"

Article Synopsis
  • The study aimed to reduce iatrogenic blood losses from excessive lab testing in very low birth weight infants, which often leads to anemia and transfusions.* -
  • Researchers conducted qualitative interviews with clinicians to identify barriers and facilitators to reducing blood losses, then implemented strategies like education and revised testing protocols.* -
  • Results showed an 18.5% decrease in lab tests and a 17% decrease in blood taken, along with significant cost savings, without increasing the necessity for blood transfusions.*
View Article and Find Full Text PDF

Colonoscopy plays a critical role in screening of colorectal carcinomas (CC). Unfortunately, the data related to this procedure are stored in disparate documents, colonoscopy, pathology, and radiology reports respectively. The lack of integrated standardized documentation is impeding accurate reporting of quality metrics and clinical and translational research.

View Article and Find Full Text PDF

Objective: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations.

View Article and Find Full Text PDF

Named Entity Recognition (NER) aims to identify and classify entities into predefined categories is a critical pre-processing task in Natural Language Processing (NLP) pipeline. Readily available off-the-shelf NER algorithms or programs are trained on a general corpus and often need to be retrained when applied on a different domain. The end model's performance depends on the quality of named entities generated by these NER models used in the NLP task.

View Article and Find Full Text PDF

As the COVID-19 pandemic unfolds, radiology imaging is playing an increasingly vital role in determining therapeutic options, patient management, and research directions. Publicly available data are essential to drive new research into disease etiology, early detection, and response to therapy. In response to the COVID-19 crisis, the National Cancer Institute (NCI) has extended the Cancer Imaging Archive (TCIA) to include COVID-19 related images.

View Article and Find Full Text PDF

Objective: The time-dependent study of comorbidities provides insight into disease progression and trajectory. We hypothesize that understanding longitudinal disease characteristics can lead to more timely intervention and improve clinical outcomes. As a first step, we developed an efficient and easy-to-install toolkit, the Time-based Elixhauser Comorbidity Index (TECI), which pre-calculates time-based Elixhauser comorbidities and can be extended to common data models (CDMs).

View Article and Find Full Text PDF

The increased demand of clinical data for the conduct of clinical and translational research incentivized repurposing of the University of Arkansas for Medical Sciences' enterprise data warehouse (EDW) to meet researchers' data needs. The EDW was renamed the Arkansas Clinical Data Repository (AR-CDR), underwent content enhancements, and deployed a self-service cohort estimation tool in late of 2016. In an effort to increase adoption of the AR-CDR, a team of physician informaticist and information technology professionals conducted various informational sessions across the UAMS campus to increase awareness of the AR-CDR and the informatics capabilities.

View Article and Find Full Text PDF