The increasing global patterns for asthma disease and its associated fiscal burden to healthcare systems demand a change to healthcare processes and the way asthma risks are managed. Patient-centered health care systems equipped with advanced sensing technologies can empower patients to participate actively in their health risk control, which results in improving health outcomes. Despite having data analytics gradually emerging in health care, the path to well established and successful data driven health care services exhibit some limitations.
View Article and Find Full Text PDFLarge-scale data sources, remote sensing technologies, and superior computing power have tremendously benefitted to environmental health study. Recently, various machine-learning algorithms were introduced to provide mechanistic insights about the heterogeneity of clustered data pertaining to the symptoms of each asthma patient and potential environmental risk factors. However, there is limited information on the performance of these machine learning tools.
View Article and Find Full Text PDFIntroduction: Machine Learning (ML) is a rapidly growing subfield of Artificial Intelligence (AI). It is used for different purposes in our daily life such as face recognition, speech recognition, text translation in different languages, weather prediction, and business prediction. In parallel, ML also plays an important role in the medical domain such as in medical imaging.
View Article and Find Full Text PDF