Publications by authors named "Shayin S Gottlieb"

Article Synopsis
  • Increasing biological nitrogen fixation (BNF) in maize can lessen the environmental harm caused by synthetic nitrogen fertilizers, but high levels of reactive nitrogen in the rhizosphere hinder this process.
  • Researchers developed gene-edited strains of bacteria (Klebsiella variicola and Kosakonia sacchari) to enhance BNF and ammonium release in nitrogen-rich conditions.
  • Experiments showed that these engineered strains significantly boosted BNF activity and ammonium output, contributing an average of 21 kg of nitrogen per hectare to maize plants, thus potentially reducing reliance on synthetic fertilizers and improving crop yield stability.
View Article and Find Full Text PDF

Agricultural productivity relies on synthetic nitrogen fertilizers, yet half of that reactive nitrogen is lost to the environment. There is an urgent need for alternative nitrogen solutions to reduce the water pollution, ozone depletion, atmospheric particulate formation, and global greenhouse gas emissions associated with synthetic nitrogen fertilizer use. One such solution is biological nitrogen fixation (BNF), a component of the complex natural nitrogen cycle.

View Article and Find Full Text PDF

Plants depend upon beneficial interactions between roots and root-associated microorganisms for growth promotion, disease suppression, and nutrient availability. This includes the ability of free-living diazotrophic bacteria to supply nitrogen, an ecological role that has been long underappreciated in modern agriculture for efficient crop production systems. Long-term ecological studies in legume-rhizobia interactions have shown that elevated nitrogen inputs can lead to the evolution of less cooperative nitrogen-fixing mutualists.

View Article and Find Full Text PDF

We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored.

View Article and Find Full Text PDF