Human hepatic tryptophan 2,3-dioxygenase (hTDO) is a homotetrameric hemoprotein. It is one of the most rapidly degraded liver proteins with a half-life (t1/2) of ∼2.3 h, relative to an average t1/2 of ∼2-3 days for total liver protein.
View Article and Find Full Text PDFHuman indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan dioxygenase (hTDO) catalyze the same dioxygenation reaction of Trp to generate N-formyl kynurenine (NFK). They share high structural similarity, especially in the active site. However, hIDO1 possesses a unique inhibitory substrate binding site (Si) that is absent in hTDO.
View Article and Find Full Text PDFHuman indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE).
View Article and Find Full Text PDFTryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O on the C atom of the L-Trp indole ring.
View Article and Find Full Text PDFHigh levels of fetal hemoglobin (HbF) can ameliorate human β-globin gene disorders. The short chain fatty acid butyrate is the paradigmatic metabolic intermediary that induces HbF. Inherited disorders of branched-chain amino acid (BCAA) metabolism have been associated with supranormal HbF levels beyond infancy, e.
View Article and Find Full Text PDFObjective: The induction of fetal hemoglobin during definitive erythropoiesis is a major therapeutic goal in β-globin gene disorders. Butyrate induces fetal hemoglobin, and p38 phosphorylation has been implicated in this process. We studied p38 and the effect of its inhibitors in a physiologic primary cell model of fetal/embryonic globin gene induction during definitive erythropoiesis.
View Article and Find Full Text PDFShort-chain fatty acids (SCFAs; butyrate and propionate) up-regulate embryonic/fetal globin gene expression through unclear mechanisms. In a murine model of definitive erythropoiesis, SCFAs increased embryonic beta-type globin gene expression in primary erythroid fetal liver cells (eFLCs) after 72 hours in culture, from 1.7% (+/- 1.
View Article and Find Full Text PDFtRNAs are transcribed as precursors and processed in a series of required reactions leading to aminoacylation and translation. The 3'-end trailer can be removed by the pre-tRNA processing endonuclease tRNase Z, an ancient, conserved member of the beta-lactamase superfamily of metal-dependent hydrolases. The signature sequence of this family, the His domain (HxHxDH, Motif II), and histidines in Motifs III and V and aspartate in Motif IV contribute seven side chains for the coordination of two divalent metal ions.
View Article and Find Full Text PDF