Publications by authors named "Shay G Wallace"

Shortages of personal protective equipment (PPE) at the start of the COVID-19 pandemic caused medical workers to reuse medical supplies such as N95 masks. While ultraviolet germicidal irradiation (UVGI) is commonly used for sterilization, UVGI can also damage the elastomeric components of N95 masks, preventing effective fit and thus weakening filtration efficacy. Although PPE shortage is no longer an acute issue, the development of sterilizable and reusable UV-resistant elastomers remains of high interest from a long-term sustainability and health perspective.

View Article and Find Full Text PDF

Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively.

View Article and Find Full Text PDF

Engineering structures that bridge between elements with disparate mechanical properties are a significant challenge. Organisms reap synergy by creating complex shapes that are intricately graded. For instance, the wear-resistant cusp of the chiton radula tooth works in concert with progressively softer microarchitectural units as the mollusk grazes on and erodes rock.

View Article and Find Full Text PDF

Solution-processed two-dimensional materials offer a scalable route toward next-generation printed devices. In this report, we demonstrate fully inkjet-printed photodetectors using molybdenum disulfide (MoS) nanosheets as the active material and graphene as the electrodes. Percolating films of semiconducting MoS with high electrical conductivity are achieved with an ethyl cellulose-based ink formulation.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) is a thermally conductive yet electrically insulating two-dimensional layered nanomaterial that has attracted significant attention as a dielectric for high-performance electronics in addition to playing a central role in thermal management applications. Here, we report a high-content hBN-polymer nanocomposite ink, which can be 3D printed to form mechanically robust, self-supporting constructs. In particular, hBN is dispersed in poly(lactic- co-glycolic acid) and 3D printed at room temperature through an extrusion process to form complex architectures.

View Article and Find Full Text PDF

High-throughput and low-temperature processing of high-performance nanomaterial inks is an important technical challenge for large-area, flexible printed electronics. In this report, we demonstrate nitrocellulose as an exothermic binder for photonic annealing of conductive graphene inks, leveraging the rapid decomposition kinetics and built-in energy of nitrocellulose to enable versatile process integration. This strategy results in superlative electrical properties that are comparable to extended thermal annealing at 350 °C, using a pulsed light process that is compatible with thermally sensitive substrates.

View Article and Find Full Text PDF