The entorhinal cortex is thought to play roles in sensory and mnemonic function, and the cholinergic suppression of the strength of synaptic inputs is likely to have important impacts on these processes. Field excitatory postsynaptic potentials (fEPSPs) in the medial entorhinal cortex evoked by stimulation of the piriform cortex are suppressed during theta EEG activity in behaving animals, and cholinergic receptor activation suppresses synaptic responses both in vivo, and in layer II entorhinal neurons in vitro. Here, we have used in vitro field potential recordings to investigate the transmitter receptors that mediate the cholinergic suppression of synaptic responses in layer I inputs to layer II of the medial entorhinal cortex.
View Article and Find Full Text PDFThe entorhinal cortex receives inputs from sensory and associational cortices, as well as a substantial input from midbrain dopaminergic neurons. Dopamine is likely to modulate the responsiveness of entorhinal cortex neurons to sensory inputs, and excitatory synaptic responses in layers I/II of the entorhinal cortex in vitro can be either facilitated or suppressed by dopamine depending upon the concentration applied. Rewarding stimulation of the lateral hypothalamus leads to activation of dopamine neurons, and the present study evaluated the effect of rewarding stimulation on synaptic responses in the lateral entorhinal cortex evoked by stimulation of the primary olfactory (piriform) cortex in behaving rats.
View Article and Find Full Text PDF