Publications by authors named "Shawninder Chahal"

Bees produce honey through the collection and transformation of nectar, whose botanical origin impacts the taste, nutritional value, and, therefore, the market price of the resulting honey. This phenomenon has led some to mislabel their honey so that it can be sold at a higher price. Metabolomics has been gaining popularity in food authentication, but rapid data mining algorithms are needed to facilitate the discovery of new authenticity markers.

View Article and Find Full Text PDF

The present study investigated the impact of filtration, creaming and pasteurization on the authentication of the botanical origin of honey using the dilute-and-shoot method in liquid chromatography coupled to mass spectrometry (LC-MS). The analytical method performances were satisfactory (analyte recoveries ranging from 95 % to 103 % and inter-day precision below 12 %). Three types of raw honeys including blueberry, canola and clover were processed under controlled conditions.

View Article and Find Full Text PDF

Carbon dots (CDs) are nanoparticles with tunable physicochemical and optical properties. Their resistance to photobleaching and relatively low toxicity render them attractive alternatives to fluorescent dyes and heavy metal-based quantum dots in the fields of bioimaging, sensing, catalysis, solar cells, and light-emitting diodes, among others. Moreover, they have garnered considerable attention as they lend themselves to green synthesis methods.

View Article and Find Full Text PDF

Several types of engineered nanoparticles (ENPs) are being considered for direct application to soils to reduce the application and degradation of pesticides, provide micronutrients, control pathogens, and increase crop yields. This study examined the effects of different metal ENPs and their dissolved ions on the microbial community composition and enzyme activity of agricultural soil amended with biosolids. The activity of five extracellular nutrient-cycling enzymes was measured in biosolid-amended soils treated with different concentrations (1, 10, or 100 mg ENP/kg soil) of silver (nAg), zinc oxide (nZnO), copper oxide (nCuO), or titanium dioxide (nTiO) nanoparticles and their ions over a 30-day period.

View Article and Find Full Text PDF