J Cardiovasc Magn Reson
March 2021
J Cardiovasc Magn Reson
February 2021
Background: Extracellular volume fraction (ECV) quantification with cardiovascular magnetic resonance (CMR) T mapping is a powerful tool for the characterization of focal or diffuse myocardial fibrosis. However, it is technically challenging to acquire high-quality T and ECV maps in small animals for preclinical research because of high heart rates and high respiration rates. In this work, we developed an electrocardiogram (ECG)-less, free-breathing ECV mapping method using motion-resolved CMR Multitasking on a 9.
View Article and Find Full Text PDFSuccessful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival.
View Article and Find Full Text PDFBackground: Position of gadolinium atom(s) plays a key role in contrast enhancement of gadolinium-based contrast agents. To gain a better understanding of effects of distance of gadolinium in relation to the nanoconjugate platform, we designed and synthesized single- and multi-arm ("star") gadolinium conjugates equipped with antibody and peptides for targeting. The contrast agents were studied for their tumor imaging performance in a glioma mouse model.
View Article and Find Full Text PDFNMR offers many possibilities in chemical analysis, structural investigations, and medical diagnostics. Although it is broadly used, one of NMR spectroscopies main drawbacks is low sensitivity. Hyperpolarization techniques enhance NMR signals by more than four orders of magnitude allowing the design of new contrast agents.
View Article and Find Full Text PDFBackground: Although tendon injuries and repairs are common, treatment of these injuries has limitations. The application of mesenchymal progenitor cells (MPCs) is increasingly used to optimize the biological process of tendon repair healing. However, clinically relevant technologies that effectively assess the localization of exogenous MPCs in vivo are lacking.
View Article and Find Full Text PDFPrecisely measuring tumor-associated alterations in metabolism clinically will enable the efficient assessment of therapeutic responses. Advances in imaging technologies can exploit the differences in cancer-associated cell metabolism as compared to normal tissue metabolism, linking changes in target metabolism to therapeutic efficacy. Metabolic imaging by Positron Emission Tomography (PET) employing 2-fluoro-deoxy-glucose ([F]FDG) has been used as a routine diagnostic tool in the clinic.
View Article and Find Full Text PDFThere is an unmet need for the treatment of glioblastoma multiforme (GBM). The extracellular matrix, including laminins, in the tumor microenvironment is important for tumor invasion and progression. In a panel of 226 patient brain glioma samples, we found a clinical correlation between the expression of tumor vascular laminin-411 (α4β1γ1) with higher tumor grade and with expression of cancer stem cell (CSC) markers, including Notch pathway members, CD133, Nestin, and c-Myc.
View Article and Find Full Text PDFProstate cancer is an androgen-dependent disease subject to interactions between the tumor epithelium and its microenvironment. Here, we found that epigenetic changes in prostatic cancer-associated fibroblasts (CAF) initiated a cascade of stromal-epithelial interactions. This facilitated lethal prostate cancer growth and development of resistance to androgen signaling deprivation therapy (ADT).
View Article and Find Full Text PDFHyperpolarization techniques are key to extending the capabilities of MRI for the investigation of structural, functional and metabolic processes in vivo. Recent heterogeneous catalyst development has produced high polarization in water using parahydrogen with biologically relevant contrast agents. A heterogeneous ligand-stabilized Rh catalyst is introduced that is capable of achieving N polarization of 12.
View Article and Find Full Text PDFMagnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal.
View Article and Find Full Text PDFParahydrogen-induced polarization (PHIP) is a method for enhancing NMR sensitivity. The pairwise addition of parahydrogen in aqueous media by heterogeneous catalysts can lead to applications in chemical and biological systems. Polarization enhancement can be transferred from H to C for longer lifetimes by using zero field cycling.
View Article and Find Full Text PDFPurpose: The energy-yielding mitochondrial Krebs cycle has been shown in many cancers and other diseases to be inhibited or mutated. In most cells, the Krebs cycle with oxidative phosphorylation generates approximately 90% of the adenosine triphosphate in the cell. We designed and hyperpolarized carbon-13 labeled succinate (SUC) and its derivative diethyl succinate (DES) to interrogate the Krebs cycle in real-time in cancer animal models.
View Article and Find Full Text PDFObjective: Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)-induced KD vasculitis mouse model.
View Article and Find Full Text PDFWater-soluble corroles with inherent fluorescence can form stable self-assemblies with tumor-targeted cell penetration proteins, and have been explored as agents for optical imaging and photosensitization of tumors in pre-clinical studies. However, the limited tissue-depth of excitation wavelengths limits their clinical applicability. To examine their utility in more clinically-relevant imaging and therapeutic modalities, here we have explored the use of corroles as contrast enhancing agents for magnetic resonance imaging (MRI), and evaluated their potential for tumor-selective delivery when encapsulated by a tumor-targeted polypeptide.
View Article and Find Full Text PDFCurrently, there is no gadolinium-based contrast agent available for conventional magnetic resonance imaging (MRI) detection of amyloidal beta (Aβ) plaques in Alzheimer's disease (AD). Its timely finding would be vital for patient survival and quality of life. Curcumin (CUR), a common Indian spice effectively binds to Aβ plaques which is a hallmark of AD.
View Article and Find Full Text PDFDifferential diagnosis of brain magnetic resonance imaging (MRI) enhancement(s) remains a significant problem, which may be difficult to resolve without biopsy, which can be often dangerous or even impossible. Such MRI enhancement(s) can result from metastasis of primary tumors such as lung or breast, radiation necrosis, infections, or a new primary brain tumor (glioma, meningioma). Neurological symptoms are often the same on initial presentation.
View Article and Find Full Text PDFPara-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact.
View Article and Find Full Text PDFThe elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging.
View Article and Find Full Text PDFObject: To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture.
Materials And Methods: Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager.
Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply.
View Article and Find Full Text PDFMR techniques using hyperpolarized (13)C have successfully produced examples of angiography and intermediary metabolic imaging, but, to date, no receptor imaging has been attempted. The goal of this study was to synthesize and evaluate a novel hyperpolarizable molecule, 2,2,3,3-tetrafluoropropyl 1-(13)C-propionate-d(2,3,3) (TFPP), for the detection of atheromatous plaques in vivo. TFPP binds to lipid bilayers and its use in hyperpolarized MR could prove to be a major step towards receptor imaging.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2007
Objective: Arteriogenesis is the major mechanism of vascular growth, which is able to compensate for blood flow deficiency after arterial occlusion. Endothelial nitric oxide synthase (eNOS) activity is essential for neovascularization, however its specific role in arteriogenesis remains unclear. We studied the role of eNOS in arteriogenesis using 3 mouse strains with different eNOS expression.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2006
Objective: To assess the importance of genetic background for collateral artery development.
Methods And Results: C57BL/6, BALB/c and 129S2/Sv mice were studied after femoral artery ligation by laser Doppler imaging, visible light oximetry, time-of-flight-magnetic resonance imaging, and treadmill testing; C57BL/6 and BALB/c also underwent electron paramagnetic resonance (EPR) oximetry, x-ray angiography, and histology. C57BL/6 had the least initial distal ischemia and most complete recovery.