Publications by authors named "Shawn Urbanski"

Pine needles represent an important fuel source in coniferous forest systems in the western United States. During forest fires, they can be easily ignited and help sustain flame on the ground. In this study, a comprehensive chemical analysis was conducted to examine oxygenated organic compounds (OOCs) present in PM formed from burning dry and moist ponderosa pine needles (PPN) in the presence and absence of fine woody debris (FWD).

View Article and Find Full Text PDF

Wildland fires are a major source of gases and aerosols, and the production, dispersion, and transformation of fire emissions have significant ambient air quality impacts and climate interactions. The increase in wildfire area burned and severity across the United States and Canada in recent decades has led to increased interest in expanding the use of prescribed fires as a forest management tool. While the primary goal of prescribed fire use is to limit the loss of life and property and ecosystem damage by constraining the growth and severity of future wildfires, a potential additional benefit of prescribed fire - reduction in the adverse impacts of smoke production and greenhouse gas (GHG) emissions - has recently gained the interest of land management agencies and policy makers in the United States and other nations.

View Article and Find Full Text PDF

Cairpol and Aeroqual air quality sensors measuring CO, CO, NO, and other species were tested in fresh biomass burning plumes in field and laboratory environments. We evaluated sensors by comparing 1-minute sensor measurements to collocated reference instrument measurements. Sensors were evaluated based on the coefficient of determination ( ) between the sensor and reference measurements, by the accuracy, collocated precision, root mean square error (RMSE), and other metrics.

View Article and Find Full Text PDF

Particulate matter (PM) is a major primary pollutant emitted during wildland fires that has the potential to pose significant health risks to individuals/communities who live and work in areas impacted by smoke events. Limiting exposure is the principle measure available to mitigate health impacts of smoke and therefore the accurate determination of ambient PM concentrations during wildland fire events is critical to protecting public health. However, monitoring air pollutants in smoke impacted environments has proven challenging in that measurement interferences or sampling conditions can result in both positive and negative artifacts.

View Article and Find Full Text PDF

Wildland fire activity and associated emission of particulate matter air pollution is increasing in the United States over the last two decades due primarily to a combination of increased temperature, drought, and historically high forest fuel loading. The regulatory monitoring networks in the Unites States are mostly concentrated in larger population centers where anthropogenic air pollution sources are concentrated. Smaller population centers in areas more likely to be impacted by wildland fire smoke in many instances lack adequate observational air quality data.

View Article and Find Full Text PDF

In recent years wildland fires in the United States have had significant impacts on local and regional air quality and negative human health outcomes. Although the primary health concerns from wildland fires come from fine particulate matter (PM), large increases in ozone (O) have been observed downwind of wildland fire plumes (DeBell et al., 2004; Bytnerowicz et al.

View Article and Find Full Text PDF

Wildland fires can emit substantial amounts of air pollution that may pose a risk to those in proximity (e.g., first responders, nearby residents) as well as downwind populations.

View Article and Find Full Text PDF
Article Synopsis
  • - The FLUXNET2015 dataset encompasses ecosystem-scale data on carbon dioxide, water, and energy exchange, collected from 212 global sites contributing over 1500 site-years of data until 2014.
  • - The dataset was systematically quality controlled and processed, facilitating consistency for various applications in ecophysiology, remote sensing, and ecosystem modeling.
  • - For the first time, derived data products such as time series, ecosystem respiration, and photosynthesis estimates are included, and 206 sites are made accessible under a Creative Commons license, with the processing methods available as open-source codes.
View Article and Find Full Text PDF

Particularly in rural settings, there has been little research regarding the health impacts of fine particulate matter (PM) during the wildfire season smoke exposure period on respiratory diseases, such as influenza, and their associated outbreaks months later. We examined the delayed effects of PM concentrations for the short-lag (1-4 weeks prior) and the long-lag (during the prior wildfire season months) on the following winter influenza season in Montana, a mountainous state in the western United States. We created gridded maps of surface PM for the state of Montana from 2009 to 2018 using spatial regression models fit with station observations and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness data.

View Article and Find Full Text PDF

The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry.

View Article and Find Full Text PDF

There is an urgent need for next-generation smoke research and forecasting (SRF) systems to meet the challenges of the growing air quality, health, and safety concerns associated with wildland fire emissions. This review paper presents simulations and experiments of hypothetical prescribed burns with a suite of selected fire behavior and smoke models and identifies major issues for model improvement and the most critical observational needs. The results are used to understand the new and improved capability required for the next-generation SRF systems and to support the design of the Fire and Smoke Model Evaluation Experiment (FASMEE) and other field campaigns.

View Article and Find Full Text PDF

Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment in the Pacific Northwest focused on cropland residue burning was used to evaluate model performance in capturing surface and aloft impacts from the burning events.

View Article and Find Full Text PDF

The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt.

View Article and Find Full Text PDF

A compact, fast response, mid-infrared absorption spectrometer using thermoelectrically (TE) cooled pulsed quantum cascade (QC) lasers and TE detectors has been developed to demonstrate the applicability of QC lasers for high precision measurements of nitrous oxide and methane in the earth's atmosphere. Reduced pressure extractive sampling with a 56 m path length, 0.5 l volume, multiple pass absorption cell allows a time response of <0.

View Article and Find Full Text PDF

Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase in diffuse radiation by the volcano enhanced the terrestrial carbon sink and contributed to the temporary decline in the growth rate of atmospheric carbon dioxide after the eruption.

View Article and Find Full Text PDF