Purpose: Observational clinicogenomic data sets, consisting of tumor next-generation sequencing (NGS) data linked to clinical records, are commonly used for cancer research. However, in real-world practice, oncologists frequently request NGS in search of treatment options for progressive cancer. The extent and impact of this dynamic on analysis of clinicogenomic research data are not well understood.
View Article and Find Full Text PDFUnlabelled: Peritoneal metastases (PM) are common in metastatic colorectal cancer (mCRC). We aimed to characterize patients with mCRC and PM from a clinical and molecular perspective using the American Association of Cancer Research Genomics Evidence Neoplasia Information Exchange (GENIE) Biopharma Collaborative (BPC) registry. Patients' tumor samples underwent targeted next-generation sequencing.
View Article and Find Full Text PDFPurpose: We describe the clinical and genomic landscape of the non-small cell lung cancer (NSCLC) cohort of the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) Biopharma Collaborative (BPC).
Experimental Design: A total of 1,846 patients with NSCLC whose tumors were sequenced from 2014 to 2018 at four institutions participating in AACR GENIE were randomly chosen for curation using the PRISSMM data model. Progression-free survival (PFS) and overall survival (OS) were estimated for patients treated with standard therapies.
The analysis of big healthcare data has enormous potential as a tool for advancing oncology drug development and patient treatment, particularly in the context of precision medicine. However, there are challenges in organizing, sharing, integrating, and making these data readily accessible to the research community. This review presents five case studies illustrating various successful approaches to addressing such challenges.
View Article and Find Full Text PDFBig data in healthcare can enable unprecedented understanding of diseases and their treatment, particularly in oncology. These data may include electronic health records, medical imaging, genomic sequencing, payor records, and data from pharmaceutical research, wearables, and medical devices. The ability to combine datasets and use data across many analyses is critical to the successful use of big data and is a concern for those who generate and use the data.
View Article and Find Full Text PDFUnlabelled: The American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) is an international pan-cancer registry with the goal to inform cancer research and clinical care worldwide. Founded in late 2015, the milestone GENIE 9.1-public release contains data from >110,000 tumors from >100,000 people treated at 19 cancer centers from the United States, Canada, the United Kingdom, France, the Netherlands, and Spain.
View Article and Find Full Text PDFPurpose: The American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative is a multi-institution effort to build a pan-cancer repository of genomic and clinical data curated from the electronic health record. For the research community to be confident that data extracted from electronic health record text are reliable, transparency of the approach used to ensure data quality is essential.
Materials And Methods: Four institutions participating in AACR's Project GENIE created an observational cohort of patients with cancer for whom tumor molecular profiling data, therapeutic exposures, and treatment outcomes are available and will be shared publicly with the research community.
Importance: Real-world data sets that combine clinical and genomic data may be subject to left truncation (when potential study participants are not included because they have already passed the milestone of interest at the time of study recruitment). The lapse between diagnosis and molecular testing can present analytic challenges and threaten the validity and interpretation of survival analyses.
Observations: Effects of ignoring left truncation when estimating overall survival are illustrated using data from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange Biopharma Collaborative (GENIE BPC), and a straightforward risk-set adjustment approach is described.
Importance: Contemporary observational cancer research requires associating genomic biomarkers with reproducible end points; overall survival (OS) is a key end point, but interpretation can be challenging when multiple lines of therapy and prolonged survival are common. Progression-free survival (PFS), time to treatment discontinuation (TTD), and time to next treatment (TTNT) are alternative end points, but their utility as surrogates for OS in real-world clinicogenomic data sets has not been well characterized.
Objective: To measure correlations between candidate surrogate end points and OS in a multi-institutional clinicogenomic data set.
AKT inhibitors have promising activity in -mutant estrogen receptor (ER)-positive metastatic breast cancer, but the natural history of this rare genomic subtype remains unknown. Utilizing AACR Project GENIE, an international clinicogenomic data-sharing consortium, we conducted a comparative analysis of clinical outcomes of patients with matched -mutant ( = 153) and -wild-type ( = 302) metastatic breast cancer. -mutant cases had similar adjusted overall survival (OS) compared with -wild-type controls (median OS, 24.
View Article and Find Full Text PDFThe American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) is an international data-sharing consortium focused on enabling advances in precision oncology through the gathering and sharing of tumor genetic sequencing data linked with clinical data. The project's history, operational structure, lessons learned, and institutional perspectives on participation in the data-sharing consortium are reviewed. Individuals involved with the inception and execution of AACR Project GENIE from each member institution described their experiences and lessons learned.
View Article and Find Full Text PDFCerebral cavernous malformations (CCMs) are human vascular malformations caused by mutations in three genes of unknown function: KRIT1, CCM2 and PDCD10. Here we show that the heart of glass (HEG1) receptor, which in zebrafish has been linked to ccm gene function, is selectively expressed in endothelial cells. Heg1(-/-) mice showed defective integrity of the heart, blood vessels and lymphatic vessels.
View Article and Find Full Text PDFType I collagen, the predominant protein of vertebrates, polymerizes with type III and V collagens and non-collagenous molecules into large cable-like fibrils, yet how the fibril interacts with cells and other binding partners remains poorly understood. To help reveal insights into the collagen structure-function relationship, a data base was assembled including hundreds of type I collagen ligand binding sites and mutations on a two-dimensional model of the fibril. Visual examination of the distribution of functional sites, and statistical analysis of mutation distributions on the fibril suggest it is organized into two domains.
View Article and Find Full Text PDFDevelopmental studies support a common origin for blood and endothelial cells, while studies of adult angiogenic responses suggest that the hematopoietic system can be a source of endothelial cells later in life. Whether hematopoietic tissue is a source of endothelial cells during normal vascular development is unknown. Mouse embryos lacking the signaling proteins Syk and Slp-76 develop abnormal blood-lymphatic endothelial connections.
View Article and Find Full Text PDFAngiogenesis depends on proper collagen biosynthesis and cross-linking, and type I collagen is an ideal angiogenic scaffold, although its mechanism is unknown. We examined angiogenesis using an assay wherein confluent monolayers of human umbilical vein endothelial cells were overlain with collagen in a serum-free defined medium. Small spaces formed in the cell layer by 2 h, and cells formed net-like arrays by 6-8 h and capillary-like lumens by 24 h.
View Article and Find Full Text PDFPerlecan, a ubiquitous basement membrane heparan sulfate proteoglycan, plays key roles in blood vessel growth and structural integrity. We discovered that the C terminus of perlecan potently inhibited four aspects of angiogenesis: endothelial cell migration, collagen-induced endothelial tube morphogenesis, and blood vessel growth in the chorioallantoic membrane and in Matrigel plug assays. The C terminus of perlecan was active at nanomolar concentrations and blocked endothelial cell adhesion to fibronectin and type I collagen, without directly binding to either protein; henceforth we have named it "endorepellin.
View Article and Find Full Text PDFType I collagen is the most abundant protein in humans, and it helps to maintain the integrity of many tissues via its interactions with cell surfaces, other extracellular matrix molecules, and growth and differentiation factors. Nearly 50 molecules have been found to interact with type I collagen, and for about half of them, binding sites on this collagen have been elucidated. In addition, over 300 mutations in type I collagen associated with human connective tissue disorders have been described.
View Article and Find Full Text PDF