The two-component regulatory system CenK-CenR has recently emerged as a regulator of cell envelope and cell division processes in the alpha-proteobacteria. In Sinorhizobium meliloti, CenK-CenR regulates the expression of SrlA, a thioredoxin-domain protein of unknown function. Deletion of srlA causes sensitivity to salt and oxidizing agents on solid growth medium.
View Article and Find Full Text PDFTranscription is the first and most heavily regulated step in gene expression. Sigma (σ) factors are general transcription factors that reversibly bind RNA polymerase (RNAP) and mediate transcription of all genes in bacteria. σ Factors play 3 major roles in the RNA synthesis initiation process: they (i) target RNAP holoenzyme to specific promoters, (ii) melt a region of double-stranded promoter DNA and stabilize it as a single-stranded open complex, and (iii) interact with other DNA-binding transcription factors to contribute complexity to gene expression regulation schemes.
View Article and Find Full Text PDFσ factors are single subunit general transcription factors that reversibly bind core RNA polymerase and mediate gene-specific transcription in bacteria. Previously, an atypical two-subunit σ factor was identified that activates transcription from a group of related promoters in Bacillus subtilis. Both of the subunits, named SigO and RsoA, share primary sequence similarity with the canonical σ70 family of σ factors and interact with each other and with RNA polymerase subunits.
View Article and Find Full Text PDFExtracytoplasmic function (ECF) σ factors constitute a major component of the physicochemical sensory apparatus in bacteria. Most ECF σ factors are co-expressed with a negative regulator called an anti-σ factor that binds to its cognate σ factor and sequesters it from productive association with core RNA polymerase (RNAP). Anti-σ factors constitute an important element of signal transduction pathways that mediate an appropriate transcriptional response to changing environmental conditions.
View Article and Find Full Text PDFSigma (σ) factors are single-subunit proteins that reversibly bind RNA polymerase and play an important role in the transcription initiation process. An unusual 2-subunit σ factor, consisting of proteins SigO and RsoA, activates transcription from a group of related promoters in Bacillus subtilis. These 2 proteins specifically interact with each other and with RNA polymerase subunits.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2009
The sigma-like factor YvrI and coregulator YvrHa activate transcription from a small set of conserved promoters in Bacillus subtilis. We report here that these two proteins independently contribute sigma-region 2 and sigma-region 4 functions to a holoenzyme-promoter DNA complex. YvrI binds RNA polymerase (RNAP) through a region 4 interaction with the beta-subunit flap domain and mediates specific promoter recognition but cannot initiate DNA melting at the -10 promoter element.
View Article and Find Full Text PDFYvrI is a recently identified alternative sigma factor in Bacillus subtilis that requires the coactivator YvrHa to activate transcription. Previously, a strain engineered to overproduce YvrI was found to overproduce oxalate decarboxylase (OxdC), and further analysis identified three YvrI-activated promoters preceding the yvrI-yvrHa, yvrJ, and oxdC-yvrL operons. Independently, proteome analyses identified OxdC as a highly abundant, cell wall-associated protein that accumulated under acidic growth conditions.
View Article and Find Full Text PDFWe describe an in vitro transcription-based method called ROMA (run-off transcription-microarray analysis) for the genome-wide analysis of transcription regulated by sigma factors and other transcriptional regulators. ROMA uses purified RNA polymerase with and without a regulatory protein to monitor products of transcription from a genomic DNA template. Transcribed RNA is converted to cDNA and hybridized to gene arrays allowing for the identification of genes that are specifically activated by the regulator.
View Article and Find Full Text PDFWe have investigated the function of a cell envelope stress-inducible gene, yvrI, which encodes a 22.5 kDa protein that includes a predicted sigma(70) region 4 domain, but lacks an apparent region 2 domain. YvrI interacts with RNA polymerase and overexpression of YvrI results in induction of OxdC, an oxalate decarboxylase maximally expressed under low-pH conditions.
View Article and Find Full Text PDFThe ability to recognize and predict non-sigma54 promoters in the alphaproteobacteria is not well developed. In this study, 25 experimentally verified Sinorhizobium meliloti promoter sequences were compiled and used to predict the location of other related promoters in the S. meliloti genome.
View Article and Find Full Text PDFThe basic replication unit of many plasmids and second chromosomes in the alpha-proteobacteria consists of a repABC locus that encodes the trans- and cis-acting components required for both semiautonomous replication and replicon maintenance in a cell population. In terms of physical genetic organization and at the nucleotide sequence level, repABC loci are well conserved across various genera. As with all repABC-type replicons that have been genetically characterized, the 1.
View Article and Find Full Text PDFThe predicted chromosomal origin of replication (oriC) from the alfalfa symbiont Sinorhizobium meliloti is shown to allow autonomous replication of a normally non-replicating plasmid within S. meliloti cells. This is the first chromosomal replication origin to be experimentally localized in the Rhizobiaceae and its location, adjacent to hemE, is the same as for oriC in Caulobacter crescentus, the only experimentally characterized alphaproteobacterial oriC.
View Article and Find Full Text PDFLarge extrachromosomal replicons in many members of the alpha-proteobacteria encode genes that are required for plant or animal pathogenesis or symbiosis. Most of these replicons encode repABC genes that control their replication and faithful segregation during cell division. In addition to its chromosome, the plant endosymbiont Sinorhizobium meliloti also maintains the 1.
View Article and Find Full Text PDFDNase A is a non-specific endonuclease of Fibrobacter succinogenes. The enzyme was purified to homogeneity and its properties studied both in vitro and in vivo. Magnesium but not calcium was essential for nucleolytic activity.
View Article and Find Full Text PDF