Helisoma trivolvis has served as a model system to study the functions of serotonin (5-HT) from cellular, developmental, physiological and behavioural perspectives. To further explore the serotonin system at the molecular level, and to provide experimental knockout tools for future studies, in this study we identified serotonin receptor genes from the H. trivolvis genome, and characterized the molecular structure and expression profile of the serotonin receptor gene products.
View Article and Find Full Text PDFHelisoma trivolvis embryos display a cilia-driven rotational behavior that is regulated by a pair of serotonergic neurons named ENC1s. As these cilio-excitatory motor neurons contain an apical dendrite ending in a chemosensory dendritic knob at the embryonic surface, they probably function as sensorimotor neurons. Given that nitric oxide (NO) is often associated with sensory neurons in invertebrates, and has also been implicated in the control of ciliary activity, we examined the expression of NO synthase (NOS) activity and possible function of NO in regulating the rotational behavior in H.
View Article and Find Full Text PDF