Wildfire events are becoming more frequent and severe on a global scale. Rising temperatures, prolonged drought, and the presence of pyrophytic invasive grasses are contributing to the degradation of native vegetation communities. Within the Great Basin region of the western U.
View Article and Find Full Text PDFUnprecedented conservation efforts for sagebrush (Artemisia spp.) ecosystems across the western United States have been catalyzed by risks from escalated wildfire activity that reduces habitat for sagebrush-obligate species such as Greater Sage-Grouse (Centrocercus urophasianus). However, post-fire restoration is challenged by spatial variation in ecosystem processes influencing resilience to disturbance and resistance to non-native invasive species, and spatial and temporal lags between slower sagebrush recovery processes and faster demographic responses of sage-grouse to loss of important habitat.
View Article and Find Full Text PDFGlobally accelerating frequency and extent of wildfire threatens the persistence of specialist wildlife species through direct loss of habitat and indirect facilitation of exotic invasive species. Habitat specialists may be especially prone to rapidly changing environmental conditions because their ability to adapt lags behind the rate of habitat alteration. As a result, these populations may become increasingly susceptible to ecological traps by returning to suboptimal breeding habitats that were dramatically altered by disturbance.
View Article and Find Full Text PDFManagers require quantitative yet tractable tools that identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin is compromised by strongly interacting stressors of conifer expansion, annual grass invasion, and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and may yield relatively little ecological benefit to sage-grouse if implemented without estimating how Sage-grouse may respond to treatments, or do not consider underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species.
View Article and Find Full Text PDFPredictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.
View Article and Find Full Text PDF