Publications by authors named "Shawn M Sarkaria"

Article Synopsis
  • - The study highlights that bone marrow fibrosis, common in primary myelofibrosis (PMF), stems mainly from leptin-receptor-positive mesenchymal cells, with myofibroblasts playing a key role in this process.
  • - Single-cell RNA sequencing revealed that these myofibroblasts exhibited reduced niche factors and increased fibrogenic factors, indicating substantial changes in the bone marrow environment during PMF.
  • - Targeting glial cells in the bone marrow may offer new therapeutic strategies, as their depletion showed potential in reducing fibrosis and improving PMF-related complications.
View Article and Find Full Text PDF

Introduction: Acute myeloid leukemia (AML) is an aggressive blood cancer that proves fatal for the majority of affected individuals. Older patients are particularly vulnerable due to more unfavorable disease biology and diminished ability to tolerate intensive induction chemotherapy (ICT). Safer, more efficacious therapies are desperately needed.

View Article and Find Full Text PDF

Various cell types cooperate to create a highly organized and dynamic micro-environmental niche in the bone marrow. Over the past several years, the field has increasingly recognized the critical roles of the interplay between bone marrow environment and hematopoietic cells in normal and deranged hematopoiesis. These advances rely on several new technologies that have allowed us to characterize the identity and roles of these niches in great detail.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is initiated by the PML-RARA (PR) fusion oncogene and has a characteristic expression profile that includes high levels of the Notch ligand Jagged-1 (JAG1). In this study, we used a series of bioinformatic, in vitro, and in vivo assays to assess the role of Notch signaling in human APL samples, and in a PML-RARA knock-in mouse model of APL (Ctsg-PML-RARA). We identified a Notch expression signature in both human primary APL cells and in Kit+Lin-Sca1+ cells from pre-leukemic Ctsg-PML-RARA mice.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is characterized by dysregulated gene expression and abnormal patterns of DNA methylation; the relationship between these events is unclear. Many AML patients are now being treated with hypomethylating agents, such as decitabine (DAC), although the mechanisms by which it induces remissions remain unknown. The goal of this study was to use a novel stromal coculture assay that can expand primary AML cells to identify the immediate changes induced by DAC with a dose (100nM) that decreases total 5-methylcytosine content and reactivates imprinted genes (without causing myeloid differentiation, which would confound downstream genomic analyses).

View Article and Find Full Text PDF

Molecularly targeted therapies are transforming the care of patients with malignant gliomas, including glioblastoma, the most common malignant primary brain tumor of adults. With an arsenal of small molecule inhibitors and antibodies that target key components of the signal transduction machinery that are commonly activated in gliomas, neuro-oncologists and neurosurgeons are poised to transform the care of these patients. Nonetheless, successful application of targeted therapies remains a challenge.

View Article and Find Full Text PDF