Publications by authors named "Shawn M Burgess"

Amongst fishes, zebrafish (Danio rerio) has gained popularity as a model system over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species has a highly complex behavioral repertoire and has been the subject of many ethological investigations but lacks genomic resources.

View Article and Find Full Text PDF

Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration.

View Article and Find Full Text PDF

Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins.

View Article and Find Full Text PDF

Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish () has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems.

View Article and Find Full Text PDF

The current view of hematopoiesis considers leukocytes on a continuum with distinct developmental origins, and which exert non-overlapping functions. However, there is less known about the function and phenotype of ontogenetically distinct neutrophil populations. In this work, using a photoconvertible transgenic zebrafish line; Tg(mpx:Dendra2), we selectively label rostral blood island-derived and caudal hematopoietic tissue-derived neutrophils in vivo during steady state or upon injury.

View Article and Find Full Text PDF

In this issue of , McGarvey et al. characterize chromatin accessibility and gene regulation at single-cell resolution in the zebrafish embryo 24 h after fertilization, providing a valuable resource. Their findings add another important piece to understanding the dynamic landscape of gene expression and regulation during early vertebrate development and hint at the dramatic changes single-cell genomics is bringing to the field of developmental biology.

View Article and Find Full Text PDF

The recent whole-genome duplication (WGD) in goldfish (Carassius auratus) approximately 14 million years ago makes it a valuable model for studying gene evolution during the early stages after WGD. We analyzed the transcriptome of the goldfish retina at the level of single-cell (scRNA-seq) and open chromatin regions (scATAC-seq). We identified a group of genes that have undergone dosage selection, accounting for 5% of the total 11,444 ohnolog pairs.

View Article and Find Full Text PDF

Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks.

View Article and Find Full Text PDF

ZRSR2 (zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2) is an essential splicing factor involved in 3' splice-site recognition as a component of both the major and minor spliceosomes that mediate the splicing of U2-type (major) and U12-type (minor) introns, respectively. Studies of -depleted cell lines and -mutated patient samples revealed its essential role in the U12-dependent minor spliceosome. However, the role of during embryonic development is not clear, as its function is compensated for by in mice.

View Article and Find Full Text PDF
Article Synopsis
  • * The consortium developed a central repository that brings together over 1,800 genomic data sets to enhance the understanding of zebrafish development.
  • * They identified 140,000 regulatory elements and explored their unique chromatin features, linking zebrafish data to mouse genomics for broader research implications.
View Article and Find Full Text PDF

Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults.

View Article and Find Full Text PDF
Article Synopsis
  • * Less than 1% of eukaryotic species have their genomes sequenced, highlighting an imbalance in research that prioritizes human health over understanding the complexity of other life forms.
  • * A collaborative approach that merges comparative genomics with various disciplines like ecology and anthropology is crucial for advancing scientific discovery and addressing broader biological and conservation challenges.
View Article and Find Full Text PDF

Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, including cancer, stroke, cardiovascular disease, retinal conditions and COVID-19-associated pulmonary edema, sepsis and acute lung injury.

View Article and Find Full Text PDF

Throughout their lifetime, fish maintain a high capacity for regenerating complex tissues after injury. We utilized a larval tail regeneration assay in the zebrafish Danio rerio, which serves as an ideal model of appendage regeneration due to its easy manipulation, relatively simple mixture of cell types, and superior imaging properties. Regeneration of the embryonic zebrafish tail requires development of a blastema, a mass of dedifferentiated cells capable of replacing lost tissue, a crucial step in all known examples of appendage regeneration.

View Article and Find Full Text PDF

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Fmn2 is a protein that plays a key role in neuron development and is linked to neurodevelopmental disorders such as sensory processing dysfunction and intellectual disability.
  • Recent research in zebrafish has shown that Fmn2b is crucial for the development of specific neural circuits, particularly the spiral fiber neuron pathway that affects the acoustic startle response.
  • Findings indicate that while responsiveness to stimuli remains intact, the loss of Fmn2b leads to decreased effectiveness in quick escape responses, emphasizing the importance of Fmn2 in understanding neural development and related disorders.
View Article and Find Full Text PDF

Purpose: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo.

Methods: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants.

View Article and Find Full Text PDF

The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2.

View Article and Find Full Text PDF

Calcification of various tissues is a significant health issue associated with aging, cancer and autoimmune diseases. There are both environmental and genetic factors behind this phenomenon and understanding them is essential for the development of efficient therapeutic approaches. Pseudoxanthoma elasticum (PXE) is a rare genetic disease, a prototype for calcification disorders, resulting from the dysfunction of ABCC6, a transport protein found in the membranes of cells.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors have emerged as the preferred platform for gene transfer because of their combined efficacy and safety. However, insertional mutagenesis with the subsequent development of hepatocellular carcinomas (HCCs) has been recurrently noted in newborn mice treated with high doses of AAV, and more recently, the association of wild-type AAV integrations in a subset of human HCCs has been documented. Here, we address, in a comprehensive, prospective study, the long-term risk of tumorigenicity in young adult mice following delivery of single-stranded AAVs targeting liver.

View Article and Find Full Text PDF

Vascular permeability triggered by inflammation or ischemia promotes edema, exacerbates disease progression, and impairs tissue recovery. Vascular endothelial growth factor (VEGF) is a potent inducer of vascular permeability. VEGF plays an integral role in regulating vascular barrier function physiologically and in pathologies, such as cancer, ischemic stroke, cardiovascular disease, retinal conditions, and COVID-19-associated pulmonary edema and sepsis, which often leads to acute lung injury, including acute respiratory distress syndrome.

View Article and Find Full Text PDF
Article Synopsis
  • Adult-onset inflammatory syndromes can exhibit overlapping symptoms, and the study discovered that mutations in ubiquitin-related genes, particularly in UBA1, are linked to these disorders.
  • Researchers utilized various methodologies, including exome sequencing and CRISPR technology, to identify mutations in patients with severe inflammatory conditions that typically develop in late adulthood.
  • The findings indicate that these mutations lead to a significant change in immune response and could help define a new inflammatory disorder related to genetic abnormalities in UBA1.
View Article and Find Full Text PDF

Background: Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model.

View Article and Find Full Text PDF